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ABSTRACT
A wireless sensor network becomes dynamic if it is monitor-
ing a time-variant event (e.g., expansion of oil spill in ocean).
In such applications, on-line boundary detection is a crucial
function, as it allows us to track the event variation in a
timely fashion. However, the problem becomes very chal-
lenging as it demands a highly efficient algorithm to cope
with the dynamics introduced by the evolving event. More-
over, as many physical events occupy volumes rather than
surfaces (e.g., oil spill again), the algorithm has to work for
3D cases. To this end, we propose UNiform Fast On-Line
boundary Detection (UNFOLD) to tackle the challenge. The
essence of UNFOLD is to inverse node coordinates such that
a “notched” surface is “unfolded” into a convex one, which
in turn reduces boundary detection to simple convexity test.
UNFOLD is uniform as every node behaves the same (per-
forming coordinate inversion and convexity test), and it is
super fast as both computation and communication involve
only one-hop neighbors. We prove the correctness and effi-
ciency of UNFOLD; we also use simulations and implemen-
tations to evaluate its performance, which demonstrates that
UNFOLD is 100 times more time and energy efficient than
the most up-to-date proposal.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Wireless Communication; F.2.2
[Theory of Computation]: Nonnumerical Algorithms and
Problems—Geometrical Problems and Computations

General Terms
Algorithm, Experimentation, Performance

Keywords
3D wireless sensor networks, on-line boundary detection, in-
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1. INTRODUCTION
One of the main applications of wireless sensor networks

(WSNs) is to constantly monitor physical events (or phe-
nomena) that are either too widely spread or too remote
to be accessed through conventional techniques. Boundary
detection, as an enabling technique to such applications, be-
comes very crucial to the functionality of WSNs. It allows
the network users to be aware of the geometry of the net-
work, which infers either the sensing coverage (if the network
only partially covers the targeted event) or the boundary of
the targeted event (if the network fully covers it).1

While most of the existing boundary detection approaches
are designed just for a “one-time shot”, the detection actu-
ally has to be constantly conducted, given the time-varying
nature of the event under surveillance. Such events, for ex-
ample, can be bio-geo-chemical processes, streams/currents,
or pollution in atmosphere or waterbodies (e.g., ocean). De-
pending on different deployments, a WSN can be either fixed
at some area to observe the event passing through or stuck
to the event to keep monitoring it. In both cases, boundary
detection has to be performed on-line to keep tracking either
the event or the network boundary. Unfortunately, the ex-
isting approaches have too high message or time complexity
to be performed in an on-line manner.

Another feature of the events under consideration is that
they often span a 3D volume rather than a 2D surface. Given
the fact that very few existing proposals deal with 3D bound-
ary detection and that extending the approaches designed
for 2D surfaces to 3D volumes is highly nontrivial in geome-
try,2 a clean-slate boundary detection algorithm needs to be
designed for 3D WSNs. Note that, should a 2D boundary
detection be ever needed, it would be really trivial to reduce
a 3D detection approach to 2D.

In this paper, we tackle the aforementioned two challenges
by proposing UNiform Fast On-Line boundary Detection
(UNFOLD). The underlying principle of UNFOLD is to ap-
ply a special inversion to the local coordinates of every node,
such that a (locally) concave surface can be “unfolded” into
a convex one. As a result, the painful procedure of identi-
fying a boundary node on a “notched” surface is reduced to
convexity test (which can be tackled with simple geometric

1Boundary detection may also aid data routing and gather-
ing (e.g, [18]), but we are more concerned with the geometric
implications of the boundary.
2For example, the well known edge flip algorithm for Delau-
nay triangulation in 2D does not converge in 3D [9].



tools). As UNFOLD entails only simple and uniform com-
putation for every node, it can be performed super fast and
hence enable on-line boundary detection. Our main contri-
butions in UNFOLD are:

• The idea of 3D WSN boundary detection in a trans-
formed domain.

• The on-line algorithm, UNFOLD, that entails only lo-
calized communications and computations.

• A real implementation of UNFOLD in MICAz Motes
for time and energy efficiency evaluations.

In the following, we first discuss backgrounds and related
literature in Sec. 2. We focus on our UNFOLD algorithm in
Sec. 3: we first discuss boundary definitions and properties,
then we present UNFOLD in detail along with the corre-
sponding analysis. We also discuss related issues in Sec. 4.
We finally report the simulation and experiment results in
Sec. 5, before concluding our paper in Sec. 6.

2. BACKGROUND AND MOTIVATIONS
In this section, we briefly discuss the existing proposals for

boundary detection, which in turn serves as the motivations
for our proposal.

2.1 Geometric or Topological
The existing boundary detection approaches can be roughly

classified into two categories, namely geometric (e.g., [15,
22, 6, 23]) and topological (e.g., [7, 11, 20, 3]). While the
former always requires the knowledge of nodes location or
distance, the latter is often claimed as a location/range-free
approach. For example, Ghrist and Muhammad [7] com-
pute homology groups, algebraic topological invariants, to
recognize “holes” within WSN coverage. Kröller et al. [11]
define boundary based on chordless cycles and propose a se-
ries of fairly sophisticated algorithms to identify subgraphs
that satisfy the boundary criterions. [20] and [3] are similar
in the sense that they rely on global connectivity informa-
tion (e.g., shortest path tree or primary boundary circle) to
“guide” further boundary refinements.

Generally, the price a topological approach pays to avoid
relying on location/range information is a highly compli-
cated procedure that often requires a large scale coordina-
tion among a WSN (in particular, the algorithm proposed
in [7] is actually centralized). Therefore, while the topo-
logical approaches do offer a one-time boundary detection
for static WSNs, they are not adequate to on-line detection.
Moreover, it is still an open question whether these topolog-
ical approaches can be extended to 3D boundary detection,
except the centralized algorithm in [7].

2.2 The “Pain” of Geometric Approaches
Equipped with location or range information (precisely,

each node knows either its own location that may come with
a certain error or the distances between itself and close-by
nodes), geometric approaches often involve fairly localized
computations and hence have the potential to be performed
on-line. However, the discrete nature of a WSN “volume”
may still make the local detection fairly complicated. On
one hand, there is no commonly agreed definition for the
boundary of a point cloud (the geometric representation of
a WSN). For example, Figure 1 shows that whether a node

Figure 1: A node (white) and all its one-hop neigh-
bors (black) are shown. Whether the white one is
identified as on the boundary or not depends on the
specific geometric interpretation. Precisely, the tri-
angulation on the left indicates the node as on the
boundary, but the answer is negative for the case on
the right. The shaded ball is used to illustrate the
idea of α-shape [4].

is at the boundary or not heavily depends on the specific
geometric interpretation. On the other hand, the algorithms
for boundary detection, albeit localized, can still incur a high
time and/or message complexity.

Zhang et al. [22] propose to use two local geometric struc-
tures, namely localized Voronoi polygon and neighbor em-
bracing polygon, for boundary characterization only in 2D.
It is shown in the paper that the detection procedure in-
volves several rounds of interactions between (at least) all
one-hop neighbors. Both [6] and [23] use a concept called
α-shape [5] for boundary detection. In a nutshell, α-shape
results from “erasing” the convex hull of a point cloud using
a spherical “eraser” with a certain radius α: while 0-shape
is the original point cloud, ∞-shape is the convex hull. In
Figure 1, the left triangulation is actually an α-shape with α
(roughly) equal to half of the transmission range. Although
the α-shape construction leads to localized boundary detec-
tion, its computation cost is still non-negligible.

Remark : Although we are concerned with boundary de-
tection in 3D WSNs, we have to provide examples in 2D to
facilitate visual illustration. However, our simulations will
be performed for real 3D WSNs.

2.3 Event Boundary vs. Network Boundary
Some existing proposals tend to distinguish between event

boundary and network boundary [23]. As we discussed in
Sec. 1, we are concerned with both boundaries for the WSN
applications under consideration. In fact, network boundary
can be considered as a particular event boundary, with the
“event” being the WSN itself. It is true that, whereas the
network boundary is a clear-cut concept, other event bound-
aries can be rather fuzzy, due to sensing errors or smooth
changes (in terms of certain physical quantities indicating
the event) around the boundary. Fortunately, relying on
statistic approaches such as [2], each node can arrive at a (bi-
nary) indicator on whether it covers a certain event or not.
Therefore, making a distinction between these two types of
boundaries may not be necessary.

2.4 Our Approach
In summary, a geometric approach that relies on the lo-

cation or range information appears to be the right way
towards a fast on-line boundary detection algorithm. The



demand of location/range information is not too much a con-
straint, given recent proposals for node localization in 3D
WSNs (e.g., [14, 19]), as well as the fact that many events
to be monitored are in open spaces and thus amenable to
GPS localization.

To cope with the notched boundaries (internal or external)
of a 3D WSN, our approach is inspired by the principle that a
transformed domain may offer features absent in the original
domain. For example, a 3D (implicit) surface xyz = c is
concave, but a logarithmic transformation makes it convex
in the transformed domain: x′+y′+z′ = c′ with (·)′ = log(·).
Therefore, the essence of our proposal is to find a simple
transformation that “unfolds” the notched boundaries into
convex ones, such that we can avoid the troublesome α-
shape construction and rely on a simple convexity test to
locally detect boundary instead.

3. UNFOLD: DETECTING BOUNDARY IN
A “MIRROR” IMAGE

In this section, we first introduce our network model and
give a brief overview of the basic ideas of UNFOLD. Then we
describe the transformation used by UNFOLD to transform
a point cloud (the geometric representation of a WSN), as
well as our formal definitions of the boundaries for the point
cloud. Finally, we present in detail the localized algorithm
for boundary detection, along with its performance analy-
sis. To maintain fluency, we postpone the proof details or
sketches to the appendices.

3.1 UNFOLD in a Nutshell
We model a 3D WSN as a point cloud P = {pi|1 ≤ i ≤

n} ⊂ R3, with each point pi representing a sensor node. We
are not concerned with network topology, so the boundaries
that we aim at detecting are purely geometric and only con-
cern local network connectivity. We assume that each node
has a convex transmission volume, such that a bi-directional
communication link exists between this node and any other
node within this volume. We denote by Ni the set of nodes
within the transmission volume of node pi, or pi’s one-hop
neighbor set. We also assume that node pi is either aware of
its geographic location or can measure the distance between
itself and another node in Ni.

As explained in Sec. 2.2, the difficulty of determining
whether a node is on the boundary stems from the existence
of notches and, more importantly, from the absence of con-
vex boundary due to consecutive notches; one would need
to rely on the fairly complicated α-shape construction to
identify boundary nodes. Our UNFOLD applies a special
transformation to “blow up” a boundary such that it be-
comes almost convex, and we define a boundary node based
on its local convexity. We illustrate the idea by Figure 2.
Note that a single transformation may only blow boundary
within a limited range of directions, so a few transformations
are needed to detect a complete boundary.

Given such a transformation, the localized algorithm for
UNFOLD to perform boundary detection becomes pretty
straightforward. Each node periodically exchanges location
or range information with its one-hop neighbors to construct
a local coordinate system. Then the transformation is ap-
plied to the coordinates of all nodes in Ni ∪ {pi}, possibly
from different directions. In the transformed domain, node
pi performs convexity test to check if it is on or out of the

Figure 2: A transformation that “blows up” a
boundary. The length of a certain arrow in the left
figure shows the “force” applied to that part of the
boundary. The darker nodes in the right figure are
those being blown up to the new convex boundary.

convex hull of Ni, and it indicates itself as a boundary node
if this test succeeds. Relevant questions we need to address
are listed as follows:

Q1 What are the properties of the boundaries resulting
from UNFOLD?

Q2 How many transformations need to be applied?

Q3 What if the location/range information for individual
nodes comes with errors?

In the following, we present detailed principles and algo-
rithms for UNFOLD, while addressing these questions.

3.2 Transformation and Boundary Definition
As we mentioned in Sec. 2.2, there is no commonly agreed

definition for the boundary of a point cloud. Our definition
is based on the assumption that a point cloud results from
sampling a certain hypothetical 3D volume. Therefore, a
point is on the boundary of the point cloud if it lies on the
hypothetical surface of that volume. As such a surface is
unknown, we borrow the idea of direct visibility from [10]:
a surface (hence the points lying on it) is what we can see
from a certain viewpoint. We first present a transformation
that enables the recognition of points on such a surface, then
we define boundary and its properties.

3.2.1 Definitions
Given any subset P ′ ⊆ P, we associate with P ′ a local

coordinate system, and we place a viewpoint v that does
not belong to the convex hull of P ′ at the origin and set a
spherical “mirror” centered at v with radius R. The trans-
formation for a point pi ∈ P ′ is given by:

p̆i = f(pi) = pi + 2(R− ‖pi‖)
pi
‖pi‖

(1)

where ‖ · ‖ can be any norm and we take Euclidean norm
‖ · ‖2 in this paper. We illustrate the effect of this “spherical
reflection” in Figure 3.

Our definition of point cloud boundary is based on the
transformation f(·).

Definition 1. For any point pi ∈ P ′ ⊆ P, pi is said
to be on the boundary of P ′ with respect to a common
transformation f(·) (defined by v and R) if Ni ⊆ P ′ and p̆i
lies on the convex hull of f(Ni)

⋃
{v}.

We refer to Figure 3 for the two extreme cases of P ′ =
Ni and P ′ = P. Note that, as the definition concerns the
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Figure 3: The effect of f(·) (defined by the viewpoint
v and the “mirror” with radius R) on point clouds.
For Ni of an arbitrary point pi, the transformation
effectively “bends” the locally concave surface to a
convex one in the transform domain (a). Given a
point cloud P in (b) and let P ′ = P, its image f(P)
in the transform domain is shown, along with part
of the detectable boundary. As demonstrated by
the two amplified one-hop neighborhoods, points on
non-convex surfaces (of the original 2D area) are
also detected as boundary points.

image of Ni in the transform domain, it focuses only on the
local property of a point cloud. Actually, we have another
definition of boundary for which even the transformation is
made local:

Definition 2. For any point pi ∈ P ′ ⊆ P, pi is said to be
on the boundary of P ′ with respect to a particular trans-
formation fpi(·) (defined by vpi and Rpi that depend on pi)
if Ni ⊆ P ′ and p̆i lies on the convex hull of fpi(Ni)

⋃
{vpi}.

While the latter definition allows the transformation to be
adapted to local geometry (hence requires only local range
information), the former definition (which requires location
information) may have certain practical significance.3 In
general, these two definitions, on one hand, are both amenable
to the design of localized algorithm. On the other hand, the
local properties stated in both definitions do have a global
implication to some extent, according to the following result.

Proposition 1. If pi is a boundary point of P according
to either definition, there exists a nontrivial P ′, i.e., Ni ⊂
P ′ ⊆ P, and a transformation f ′(·), such that f ′(pi) lies
on the convex hull of f ′(P ′)

⋃
{v′}. In particular, pi is an

external boundary point of P, iff f ′(pi) lies on the convex
hull of f ′(P)

⋃
{v′}.

The transformation f(·) shown in (1) is inspired by an in-
version applied in a quite different context [10]. Katz et al.
[10] applies this inversion to identify visible points on part
of the external boundary of a point cloud, our extension

3Taking the recent BP oil spill as an example. Should a
WSN be deployed to monitor the spill coverage, a question
some Miami tourism authority might ask would be: how
far is the spill frontline towards Key West? This question
effectively asks for a boundary detection based on a common
viewpoint at Key West.

involving only local convexity test, however, allows bound-
ary detection for both internal and external boundaries of a
point cloud from all directions.

3.2.2 Properties
First, it is straightforward to show that the boundary def-

initions preserve convexity, i.e.,

Proposition 2. If pi is on the convex hull of P ′ ⊆ P
and Ni ⊆ P ′, then pi is on the boundary of P ′ with respect
to a certain transformation f(·).

In other words, if a point is on a (internal or external) surface
of the hypothetical volume represented by P and is “visible”
(due to locally convexity) from some viewpoint, it will be
recognized as a boundary node.

Secondly, our definition assures that a node not on any
hypothetical surface will not be recognized as a boundary
node, i.e.,

Proposition 3. If pi is recognized as a boundary node
for P ′ ⊆ P with respect to a certain transformation f(·),
p′i ∈ Ni will not be recognized as a boundary node if v, pi,
p′i are collinear.

This safety property suggests that the transformation does
not flip a point strictly behind a hypothetical surface out of
that surface.

The third property states how much impact the transfor-
mation can have on a notched surface to “blow it up”. We
first define a quantity to measure to what extent a point is
notched locally.

Definition 3. Given pi ∈ P and Ni, if pi lies within
the convex hull, conv(Ni), of Ni, we define the Depth of
Notch (DoN) d of pi as the distance from pi to the nearest
plane on conv(Ni).

We illustrate the definition of DoN in Figure 4(a), and we

pi

R

v
�

1

�
2

rk

rj

ri

d

(a) Depth of Notch in 3D (b) Depth of Notch in 2D

Figure 4: The definition of Depth of Notch (DoN)
is shown in 3D (a). However, to simplify the inter-
pretation, we analyze the 2D case in (b), which can
be considered as a projection of the 3D case on a
certain plane.

show that, given f(·) (with certain v and R), a node can be
“blown” to the convex hull only if its DoN is below a certain
threshold. The proposition, illustrated by Figure 4(b), is
stated and proven in 2D for the sake of simplicity, but it is
readily extensible to 3D.



Proposition 4. For a given f(·), pi is recognized as a
boundary node for P ′ ⊆ P iff its DoN d satisfies:

d =
ri (rj sinα1 + rk sinα2)− rjrk sin(α1 + α2)√

r2j + r2k − 2rjrk cos(α1 + α2)
,

where ri ≤ 2R − (2R−rj)(2R−rk) sin(α1+α2)

(2R−rj) sinα1+(2R−rk) sinα2
. If α1 = α2 =

α, rj = rk = r in particular, d ≤ 2R(1− cosα).

Given a common viewpoint transformation (Definition 1),
(ri, rj , rk) and (α1, α2) are fixed to each point, but R can
be tuned to adapt to different requirement on compensat-
ing d. If a transformation is chosen for individual points
(Definition 2), all the parameters of the transformation
can be tuned. In 3D, the condition stated in (Definition 4)
needs to be satisfied within all planes that pass through the
line determined by v and pi.

Finally, we answer Q2 raised in Sec. 3.1 by showing that,
no matter which direction a hypothetical surface is facing,
only a constant number of transformations are needed to
recognize points on this surface.

Proposition 5. If pi is on a hypothetical (internal or
external) surface of P and it satisfies the DoN criterion,
at most four transformations (hence four viewpoints) are
needed to recognize pi as a boundary point.

In summary, our boundary definitions based on f(·) have
the following three properties:

1. Safety I: Points that are surely on some surface will
be identified as boundary points.

2. Safety II: Points that are surely not on any surface
will not be identified as boundary points.

3. Tunable Liveness: Points on a non-convex surface
can be identified with a small number of properly tuned
transformations.

3.3 On-Line Boundary Detection Algorithm
Given the definitions of transformation and boundary, we

are ready to present our UNFOLD for on-line boundary de-
tection. UNFOLD involves mainly three steps for each
node in a WSN:

1. Local Interactions: Each node pi exchanges loca-
tion or range information with its neighbors in Ni to
construct a local coordinate system. This step is triv-
ial if the location information is available (through, for
example, [14, 19]); otherwise a certain 3D embedding
algorithm (e.g., [17]) is used to create the coordinate
system using mutual distances. The origin of the co-
ordinate system is the viewpoint v.

(a) If the location information is available, we could
afford to have a common viewpoint v (Definition 1),
which can be required by certain applications (such
as the BP oil spill example we gave in footnote 3).

(b) Viewpoint vpi (Definition 2) specific to every pi
can always be applied. This is preferred if only
range information is available, as otherwise we
have to perform a costly procedure to gradually
construct a global coordinate system with local
range information (e.g., [8]).

2. Transformation: Having the coordinates for all nodes
in Ni

⋃
{pi} with respect to a origin v (or vpi), node

pi applies the transformation given in (1) to these co-
ordinates and obtains their images. This step involves
only simple computations.

3. Convexity Test: Each node pi performs a convexity
test to decide whether or not its image p̆i is on the
convex hull of f(Ni)

⋃
{v} (or fpi(Ni)

⋃
{v}). A basic

algorithm is shown in Algorithm 1. We use ~x to

Algorithm 1 CVX–TEST

Input: f(Ni), p̆i, a coord. system with v as the origin
Output: Binary indicator boundary(p̆i)
1: for all distinct node pair m1,m2 ∈ f(Ni) do
2: ~n← (~pi − ~m1)× (~pi − ~m2); ~n← ~n

‖~n‖ ; b = ~pi · ~n;

3: boundary(p̆i)← true;
4: for all m ∈ f(Ni)\{m1,m2} do
5: if ~m · ~n > b then
6: boundary(p̆i)← false; break;
7: end if
8: end for
9: if boundary(p̆i) = true then

10: break;
11: end if
12: end for

represent the vector form of a point x̆. The idea is to
try all possible planes determined by p̆i and another
two points in f(Ni) (lines 1–3), and to check whether
one of them is a supporting plane for f(Ni)

⋃
{v} (lines

4–8), i.e., if f(Ni)
⋃
{v} lies on one side of that plane.

To improve the efficiency, we apply the divide-and-
conquer strategy. Observe that, after each inner loop
(lines 4–8), points in f(Ni) can be totally ordered un-
der ≥, according to their inner products with the nor-
mal ~n. Therefore, instead of arbitrarily choosing a
(m1,m2) pair, we replace only one of the current two
points with what is ordered first in f(Ni) (ties broken
arbitrarily), such that the replaced point lies on the
same side as v with respect to the new plane. In fact,
no sorting is needed; the maximum point is naturally
obtained at the end of each inner loop (lines 4–8). The
algorithm terminates if neither points can be replaced:
either because replacing either of them separates an-
other from v or because the node ordered first in f(Ni)
lies on the current plane (i.e., the plane is a supporting
plane). The algorithm returns boundary(pi) = true
if the current plane is a supporting plane and returns
boundary(pi) = false otherwise. We call this enhanced
algorithm CVX–TEST–DC.

Note that the algorithm is conducted by individual nodes
without the need for time synchronization. Therefore, UN-
FOLD is a localized algorithm requires only asynchronous
operations; this makes UNFOLD extremely efficient.

3.4 Performance Analysis
We analyze the performance of UNFOLD on two aspects.

We first look at the (time) complexity of UNFOLD, which
also represents the energy efficiency of the algorithm. Then
we show the robustness of UNFOLD against location or
range errors.



3.4.1 Complexity Analysis
Our analysis on UNFOLD focuses on the transformation

and convexity test steps, as the first step either has a negli-
gible complexity if location information is available or oth-
erwise involves well known procedures that are commonly
applied in other proposals (e.g., [23]).

Assuming η = |Ni|, the complexity of the transforma-
tion is obviously Θ(η), as we basically apply the transfor-
mation (1) to all nodes in Ni

⋃
{pi}. The complexity of the

basic convexity test, CVX–TEST, is also obvious: as the
outer iteration has η(η − 1) loops and the inner iteration
has η − 2 loops, the complexity is Θ(η3). Consequently, the
complexity (both average and worst-case) of UNFOLD with
CVX–TEST is Θ(η3). Although this is same as that of the α-
shape based boundary detection [23], the actually CPU time
(hence energy consumption) of UNFOLD is actually much
less (as shown in Sec. 5.2). The reason is simple: convex-
ity test involves only vector operations (which are basically
arithmetic instructions), whereas α-shape construction en-
tails complicated operations/procedures such as square root
and solving equation systems. Moreover, we may further re-
duce the complexity of UNFOLD by applying the enhanced
convexity test: CVX–TEST–DC.

Proposition 6. The average-case complexity of
CVX–TEST–DC is O(η log η).

This effectively reduces the average-case complexity of UN-
FOLD to O(η log η). Although the worst-case complexity
is Θ(η2), those worst cases happen very rarely according to
our experience.

3.4.2 Error Analysis
Given the fact that the geometric boundary of a point

cloud is not well defined, it is impossible to perform error
analysis rigorously, as there is no ground truth to be com-
pared with. One may be able to create a set of artificial
“ground truth” boundary points in simulations, by deliber-
ately sampling on the surface of the volume from which a
point cloud is derived (which is the method that we will
apply in Sec. 5.1 to evaluate the robustness of UNFOLD).
However, unless those points are sampled extremely dense,
there are still chances that certain“under the surface”points
are detected as boundary points, regardless of which bound-
ary detection mechanism is used. It is definitely unreason-
able to categorize these points as detection errors, as they
may well be on the surface of another volume that results in
the same point cloud. Consequently, the error analysis we
discuss here is rather qualitative.

If location information is available to every node, the error
can be characterized by a small ball with radius ε around
the expected location of the node, where ε can be the mean
square error resulting from certain localization mechanism
(e.g., GPS). If only range information between neighboring
nodes is available, the initial errors come from the given
ranging technique. However, this error will eventually be
translated into location errors through a 3D embedding al-
gorithm (e.g., [17]). In either case, ε cannot be too large
compared with the radius of conv(Ni), as otherwise it could
be corrected (thus reduced) based the local connectivity re-
lations. Therefore, we may safely assume that ε is bounded
by the radius of conv(Ni).

For a boundary node (based on our definitions), the loca-
tion errors may either decrease or increase DoN, if we con-

sider a node pi on or out of its local convex hull conv(Ni)
as having a non-positive DoN. Apparently, a decreased DoN
has no impact on boundary detection, whereas an increased
DoN is somewhat compensated by our transformation, ac-
cording to Proposition 4. For a non-boundary node, there
are two cases: either it is very close to a boundary node or
it indeed lies in the very interior of the point cloud. The
former case, compared with a boundary node, is inversely
affected by location errors. As the node is anyway close to a
boundary node, a false positive does not really compromise
boundary detection. The latter case can hardly be affected
by location errors, given the boundedness of these errors. In
summary, UNFOLD is very robust against location errors;
we will demonstrate this in Sec. 5.1.

4. DISCUSSIONS
We briefly discuss two related issues in this section. These

are limitations of UNFOLD, as well as potential mechanisms
that may work along with UNFOLD.

4.1 Limitations of UNFOLD
For extremely sparse WSNs (e.g., average neighbor set size

below 10), it is possible that most of the nodes are detected
as boundary nodes. The reason is that, as |Ni| is small, it is
highly probable that pi is very close to conv(Ni). In other
words, the DoN of pi is small from some viewpoint. This is
actually a common problem for localized detection mecha-
nisms, as they are all not concerned with global topology.

Compared with other localized detection mechanisms such
as [6, 23], UNFOLD has one more leverage against this over-
detection. As the transformation can be tuned to be more
sensitive to DoN, we can somewhat avoid over-detection at a
price of slightly losing nodes close to the real boundary. One
possible future work is to combine certain local topological
information to remove these over-detected nodes.

4.2 Companions of UNFOLD
One important companion of UNFOLD is a data collection

mechanism to gather the boundary information towards hu-
man users, if a global boundary information is needed. The
volume surface can be reconstructed in a centralized way
based on the collected boundary information.4 For our cur-
rent implementation, we are using a generic routing protocol
for collecting boundary information, but we are working on
routing mechanisms that are adapted to this specific data
collection. Another potential companion we are considering
is an in-network data aggregation scheme to avoid transmit-
ting all the boundary information while still allowing full
surface reconstruction at the user side [21].

UNFOLD, as a boundary detection mechanism, can also
be used to support greedy (geographic) routing. Especially,
as shown in [16], greedy routing can be applied even if loca-
tion information is not available. The basic idea there is to
generate virtual coordinates based on the awareness of the
external boundary. However, it is well known that a greedy
routing may fail due to local minima resulting from “holes”
within a WSN, and this problem gets even serious in 3D
WSNs [4]. In our (on-going) companion work, we propose

4Although the surface reconstruction can be performed in a
distributed manner (e.g., [23]), localized computing is not a
cost-effective way for this purpose. As the boundary infor-
mation needs anyway to be collected, the centralized surface
reconstruction is both energy and time efficient.



(a.1) 3691 nodes (b.1) Top viewpoint: 912 boundary nodes (c.1) 2607 boundary nodes

(a.2) 6795 nodes (b.2) Left viewpoint: 640 boundary nodes (c.2) 2560 boundary nodes

(a.3) 5902 nodes (b.3) Bottom viewpoint: 1230 boundary nodes (c.3) 4263 boundary nodes

(a.4) 10000 nodes (b.4) Top viewpoint: 955 boundary nodes (c.4) 3131 boundary nodes

(a) Original networks (b) Boundary from a common viewpoint (c) Boundary with local viewpoints

Figure 5: Boundary detection through UNFOLD. As the“shapes” of the WSNs may not be easily recognizable
from their point clouds, we attach their original 3D volumes to respective point clouds (a). For boundary
detection with a common viewpoint, boundary nodes are marked on top of the original clouds (b). We,
however, remove the internal nodes when local viewpoints are applied to detecting the whole boundary (c).

to combine UNFOLD (which detects both internal and ex-
ternal boundaries) with a greedy routing, in order to provide
guaranteed delivery in 3D WSNs. The boundary informa-
tion, along with a geographic routing protocol, can in turn
serve as building blocks for constructing a distributed data
management system in 3D WSNs [12, 13].

5. SIMULATIONS AND EXPERIMENTS
We evaluate UNFOLD through both simulations and ex-

periments. With simulations, we demonstrate the efficacy of
UNFOLD in large scale WSNs. Through experiments based
on an implementation in MICAz Motes, we confirm UN-
FOLD’s superiority in efficiency over the most up-to-date
proposal [23].

5.1 Simulations
We first construct several 3D volumes to represent the

physical events to be monitored. Then we randomly deploy
sensor nodes in each volume and on the volume surface.
As explained in Sec. 2.3, we may treat network and event
boundary equivalently without loss of generality. Therefore,
the goal of our simulations is to verify if UNFOLD can cor-
rectly identify the those points that we have deliberately put
on the volume boundaries (which, according to Sec. 3.4.2, is
an inevitable but artificial setting). Although UNFOLD ap-
plies to arbitrary convex transmission volumes, we assume a
regular volume, a ball with radius r, for every node in order
to simplify our presentation. We choose the value of r such
that the average size of Ni is about 40.



0 r/6 r/3 r/2 2r/3 5r/6 r
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Error radius ε

#
 o

f 
B

o
u

n
d

a
ry

 N
o

d
e

s

 

 

Found

Correct

Mistaken

Missing

r/6 r/3 r/2 2r/3 5r/6 r
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Error radius ε

D
is

tr
ib

u
ti
o

n
 o

f 
M

is
ta

k
e

n
 B

o
u

n
d

a
ry

 N
o

d
e

s

 

 

1−hop

2−hop

r/6 r/3 r/2 2r/3 5r/6 r
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Error radius ε

D
is

tr
ib

u
ti
o

n
 o

f 
M

is
s
in

g
 B

o
u

n
d

a
ry

 N
o

d
e

s

 

 

1−hop

2−hop

(a) Algorithm efficiency (b) Mistaken distribution (c) Missing distribution

(d) ε = 1
6
r: 2554 boundary nodes (e) ε = 1

3
r: 2189 boundary nodes (f) ε = 2

3
r: 1902 boundary nodes

Figure 6: Boundary detection under location errors. We vary the error radius ε as different fractions of the
transmission range r, and we both statistics (a–c) and an example (d–f).

The implementation of UNFOLD in our simulator follows
the protocol description in Sec. 3.3. Specifically, each node
first exchanges location information with its neighbors. As
our high-level simulator neglects the MAC effect, this infor-
mation exchange is considered to be reliable. In practice,
the reliability can be achieved through, for example, ARQ.
After collecting the neighbor information, all the computa-
tions left for a node are strictly localized: transformation
and convexity test.

In Figure 5, four examples of the simulated WSNs are
shown. The WSNs, shown in the left column, are designed
to exhibit various 3D shapes we may face in atmospheric
or ocean monitoring. We apply UNFOLD with either com-
mon viewpoint or local viewpoints to perform boundary de-
tection, and the results are shown in the central and right
columns, respectively. It is clearly shown that, while a single
common viewpoint only detects the boundaries that face the
viewpoint, a few local viewpoints detect the whole boundary.
Note that, though the inversion used in [10] only detects an
external boundary, our extension also detects the internal
boundary, as shown by the second and third WSNs.

We also evaluate the robustness of UNFOLD under loca-
tion errors. We assume each node has an error radius ε, such
that the location information available to a node may be uni-
formly distributed within a ball with radius ε and centered
at the real location. We then vary ε to different fractions of
r, and apply UNFOLD to detect the boundary. In general,
a node that is either a real boundary node or detected as a
boundary node may have four states:

• Found: detected as a boundary node

• Correct: a boundary node and also detected as one

• Mistaken: not a boundary node and detected as one

• Missing: a boundary node and not detected as one

In Figure 6(a), we report the statistics in terms of these
four states based on all the WSNs that we have simulated.
We also report the statistics on the distance (in hop) from a
mistaken/missing node to the closest correct boundary node
in Figure 6(b) and (c). The same metrics are used in [23];
we reuse them to facilitate comparisons.

As shown in Figure 6(a), both found and correct nodes de-
crease with an increasing error radius. However, even with
the worst case error ε = r, correct nodes still account from
around 50% the total boundary nodes. Also, the distribu-
tions in Figure 6(b) and (c) show that both mistaken and
missing nodes are not far from the real boundary (at most
two hops but mostly within one hop). We finally provide
one example, corresponding the first WSN in Figure 5, in
Figure 6(d–f). The message conveyed by all these figure is
clear: although increasing location errors may marginally af-
fect the detected boundaries (which is characterized by the
found nodes), these boundaries still well characterizes the
geometry of the network volume. Compared with the statis-
tics reported in [23], UNFOLD appears to be more robust
against the location errors: higher correct nodes percentage
and shorter distances (from the mistaken and missing nodes)
toward the real boundary.

5.2 Implementation and Experiments
We implement UNFOLD in MICAz Motes, and compare

UNFOLD with the Unit Ball Fitting (UBF) algorithm pro-
posed in [23] in terms of CPU time for boundary detection.
Our experiments focus only on local computation steps, as
the local communications to exchange location/range infor-
mation are common to both approaches. Consequently, we
use the location information sampled from our simulated
WSNs and inject these data to a MICAz Mote, such that we
can directly start the actually boundary identification steps:
transformation/convexity tests for UNFOLD, and ball tests
for UBF. As the microcontroller of our MICAz (ATMEL AT-



Mega 128L) is fully occupied (i.e., never in idle mode or be-
ing interrupted) during both computations, we may roughly
use the CPU time to also represent the energy consumption
spent for computations. Consequently, our experiments also
compare UNFOLD with UBF in terms of energy efficiency.

We show two sets of results, internal and boundary nodes,
in Figure 7 and 8, respectively. The comparisons are made
between UBF and two versions of UNFOLD that differ in
the convexity test algorithms. As an internal node is often
the worst case for all the three schemes, Figure 7 serves as a
confirmation of the complexity analysis (Sec. 3.4.1). Because
the complexity of both UBF and CVX–TEST are Θ(η3),
the more than 10 times difference between them stems from
the simple computations incurred by CVX–TEST. Another
more than 10 times improvement brought by CVX–TEST–
DC follows from its O(η log η) complexity.

20 30 40 50 60 70 80 90

10
2

10
3

10
4

# of node in the neighbor set N
i

C
P

U
 t

im
e

 (
m

s
)

 

 

UBF

CVX−TEST

CVX−TEST−DC

Figure 7: CPU times for internal nodes.
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Figure 8: CPU times for boundary nodes.

For boundary nodes (Figure 8), all the three schemes may
face cases varying from the best to the worst. Therefore, the
CPU times are rather dispersed, but the roughly 100-time
advantage of CVX–TEST–DC over UBF still holds. Note
that the fairly constant (and almost always the smallest)
CPU times for CVX–TEST–DC mostly indicate the cost
of the transformation f(Ni). In summary, UNFOLD with
CVX–TEST–DC is far more time and energy efficient than

UBF. In fact, with a CPU time of tens of seconds, UBF may
not even be eligible for an on-line boundary detection.

6. CONCLUSION
We have investigated the challenging problem of on-line

boundary detection in 3D WSNs, and we have proposed UN-
FOLD as a concrete solution to this problem. UNFOLD sig-
nificantly speeds up the boundary detection by performing
it in a transformed domain. This makes it perfectly suit-
able for on-line boundary detection in 3D WSNs that are
deployed for monitoring time-variant physical events. We
have demonstrated the efficiency and efficacy of UNFOLD
through both simulations and experiments (using a MICAz-
based testbed). Compared with an up-to-date proposal, UN-
FOLD is, on one hand, more robust against the location er-
rors, and on the other hand, UNFOLD is far more efficient
in terms of both computation time and energy consumption.

Our future work, apart from the companions discussed in
Sec. 4.2, involves the development of a full-fledged testbed
for comparing various boundary detection schemes.
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[11] A. Kröller, S. Fekete, D. Pfisterer, and S. Fischer.
Deterministic Boundary Recognition and Topology



Extraction for Large Sensor Networks. In Proc. of the
17th ACM/SIAM SODA, 2006.

[12] J. Luo and Y. He. GeoQuorum: Load Balancing and
Energy Efficient Data Access in Wireless Sensor
Networks. In Proc. of the 30th IEEE INFOCOM
(mini-conference), 2011.

[13] J. Luo, F. Li, and Y. He. 3DQS: Distributed Data
Access in 3D Wireless Sensor Networks. In Proc. of
the IEEE ICC, 2011.

[14] J. Luo, H.V. Shukla, and J.-P. Hubaux.
Non-Interactive Location Surveying for Sensor
Networks with Mobility-Differentiated ToA. In Proc.
of the 25th IEEE INFOCOM, 2006.

[15] R. Nowak and U. Mitra. Boundary Estimation in
Sensor Networks. In Proc. of the 2nd ACM/IEEE
IPSN, 2003.

[16] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,
and I. Stoica. Geographic Routing without Location
Informtion. In Proc. of the 9th ACM MobiCom, 2003.

[17] Y. Shang and W. Ruml. Improved MDS-Based
Localization. In Proc. of the 23rd IEEE INFOCOM,
2004.

[18] S. Subramanian, S. Shakkottai, and P. Gupta.
Optimal Geographic Routing for Wireless Networks
with Near-arbitrary Holes and Traffic. In Proc. of the
27th IEEE INFOCOM, 2008.

[19] G. Tan, H. Jiang, S. Zhang, and A.-M. Kermarrec.
Connectivity-based and Anchor-Free Localization in
Large-Scale 2D/3D Sensor Networks. In Proc. of the
11th ACM MobiHoc, 2010.

[20] Y. Wang, J. Gao, and J. Mitchell. Boundary
Recognition in Sensor Networks by Topological
Methods. In Proc. of the 12th ACM MobiCom, 2006.

[21] L. Xiang, J. Luo, and A. Vasilakos. Compressed Data
Aggregation for Energy Efficient Wireless Sensor
Networks. In Proc. of the 8th IEEE SECON (to
appear), 2011.

[22] C. Zhang, Y. Zhang, and Y. Fang. Localized
Algorithms for Coverage Boundary Detection in
Wireless Sensor Networks. Springer Wireless
Networks, 15(1):3–20, 2009.

[23] H. Zhou, S. Xia, M. Jin, and H. Wu. Localized
Algorithm for Precise Boundary Detection in 3D
Wireless Networks. In Proc. of the 30th IEEE ICDCS,
2010.

APPENDIX
We hereby provide (detailed or sketched) proofs for the propo-
sitions stated in our paper.

A. PROOFS OF PROPOSITION 1
Let pi be on the boundary of P according to either Defini-

tion 1 or 2, and let v be the concerned viewpoint. Without
loss of generality, we may expand Ni to a nontrivial P ′ ⊆ P
such that Ni ⊂ P ′, simply by adding one more point, i.e.,
P ′ = Ni

⋃
{p′}. There are two possible cases: p′ lies ei-

ther on or not on the line segment between v and pi. As
p′ 6∈ conv(Ni) (otherwise we would have p′ ∈ Ni, given
the convexity of the transmission volume), we can avoid the
former case by choosing v very close to the boundary of
conv(Ni). For the latter case, we simply let v′ = v. Ac-

cording to the “blowing-up” feature of the transformation
f(·) (which will be quantified by Proposition 4), there al-
ways exists an f ′(·) such that f ′(pi) lies on the convex hull
of f ′(P ′)

⋃
{v′}, as far as there is no point in P ′ that lies on

the line segment between v′ and pi.
In particular, if pi is on the external boundary of P, it is

“visible” from some viewpoint v′. Therefore, we can directly
expand Ni to P and be sure that no p′ ∈ P is on the line
segment between v′ and pi. Consequently, there exists an
f ′(·) such that f ′(pi) lies on the convex hull of f ′(P)

⋃
{v′}.

Conversely, the existence of an f ′(·) such that f ′(pi) lies on
the convex hull of f ′(P)

⋃
{v′} suggests that no p′ ∈ P is on

the line segment between v′ and pi. Since v′ 6∈ conv(P), pi
has to be on the external boundary of P. Q.E.D.

B. PROOFS OF PROPOSITIONS 2 AND 3
It is straightforward to verify that the transformation f(·)

preserves surface convexity. In other words, if part of the
surface is described by a convex function, this convexity is
preserved in the image of f(·). The fact that pi is on the
convex hull of P ′ ⊆ P suggest that the surface through pi
is locally convex. Therefore, simply choosing a viewpoint v
that faces that surface and applying a proper f(·) will lead
to the claim made in Proposition 2.

Based on the formulation of f(·), it is trivial to show
that, if v, pi, p

′
i are collinear, then v, pi, p

′
i, f(pi), f(p′i) are

also collinear. Therefore, at most one of pi and p′i can be
recognized as a boundary node, hence the claim made in
Proposition 3 follows. Q.E.D.

C. PROOFS OF PROPOSITIONS 4 AND 5
We only sketch the proof of Proposition 4 by omitting

the tedious trigonometric derivations. To derive the upper
bound for d, we consider the worst case where the images of
the three points become collinear, as shown in Figure 9(a),
because further increasing d would compromise the convex-
ity of p̆i. Using basic trigonometry, we can obtain the rela-
tion between d and (ri, rj , rk, α1, α2) as

d =
ri (rj sinα1 + rk sinα2)− rjrk sin(α1 + α2)√

r2j + r2k − 2rjrk cos(α1 + α2)
.

Obviously, given (rj , rk, α1, α2), d is increasing in ri. There-
fore, we bound d from above by bounding ri. The key to sub-
sequent derivations is: β1 +β2 = π ⇒ tanβ1 + tanβ2 = 0 in
the worst case shown in Figure 9(a). Using (R, rj , rk, α1, α2)
to represent tanβ1 and tanβ2, we have

ri ≤ 2R− (2R− rj)(2R− rk) sin(α1 + α2)

(2R− rj) sinα1 + (2R− rk) sinα2
.

The case where α1 = α2 and rj = rk follows trivially.
The statement that four transformations are sufficient to

recognize boundary points follows from the sufficiency of
“seeing” a whole spherical surface from four viewpoints. If
pi is on a hypothetical surface of P, we need a viewpoint v
from which this surface is visible. As our convexity test is
localized, all the surfaces of conv(Ni) need to be tested, we
hence need a sufficient number of viewpoints for all these
surfaces. As we can embed the surface of conv(Ni) in the
surface of an enclosing ball Bi centered at pi, the visibility
of conv(Ni) is equivalent to that of Bi.

We put a tetrahedron Ti with vertices v1, v2, v3, v4 that
encloses Bi, as shown in Figure 9(b). For any point p on
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Figure 9: Illustrations for proofs. (a) Depth of
Notch (DoN) in 2D – the extreme case, and (b) the
ball surface is visible from at least one vertex of an
enclosing tetrahedron.

the surface of Bi, the condition that it is not visible from
any vertex is that (~p − ~pi) · (~vj − ~p) < 0,∀j = 1, 2, 3, 4.
However, as p, along with the three closest vertices (v1, v2, v4
in Figure 9(b) for example), form another tetrahedron Tp,
the condition for invisibility contradicts the fact that ~p− ~pi
points to the interior of Tp from point p. Therefore, our
claim in Proposition 5 follows. Q.E.D.

D. PROOF OF PROPOSITION 6
For the k-th outer iteration, let ~nk and ~nk · ~pi denote the

plane used for the test, i.e., ~nk · ~m = ~nk ·~pi, ∀m ∈ R3, and let
N̆ k
i be the subset of f(Ni) that belongs to the convex hull

of {v,m1, · · · ,mk, p̆i}, where mk refers to the point chosen

for the k-th iteration. We first show that {N̆ k
i } is a strictly

increasing sequence.

Lemma 1. N̆ k
i ⊂ N̆ k+1

i .

Proof. Given the construction, it is clear that N̆ k
i ⊆

N̆ k+1
i . Assume, by contradiction, that N̆ k

i = N̆ k+1
i . This

implies that mk+1 ∈ N̆ k
i , and hence contradicts the fact

that ~mk+1 is the largest among f(Ni) in terms of its inner
product with ~nk.

As f(Ni) is a finite set, Lemma 1 shows that CVX–TEST–
DC terminates in finite time regardless of the status of p̆i. If
p̆i is on the convex hull of f(Ni)

⋃
{v}, the correctness of the

algorithm is obvious. Otherwise the correctness is confirmed
by the following result.

Lemma 2. If neither mk−1 nor mk can be replaced at
the k-th iteration and the current plane is not a supporting
plane, p̆i is not on the convex hull of f(Ni)

⋃
{v}.

Proof. Let us consider the simplex induced by the set
{v,mk−1,mk,mk+1} in Figure 10(b), where mk+1 is a candi-
date to be added for the next iteration. The assumption that
mk+1 cannot replace either mk−1 or mk implies that a plane
determined by p̆i and any two points in {mk−1,mk,mk+1}
separates the third from v. It is straightforward to show
that this is possible only if p̆i is inside the simplex, hence
proving p̆i is not on the convex hull of f(Ni)

⋃
{v}.
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Figure 10: Illustration for proof of Lemma 2.

It is straightforward to see that CVX–TEST–DC is similar
to quicksort, as the new point chosen in each iteration acts
in a similar way as the pivot in quicksort. Moreover, CVX–
TEST–DC only needs to “conquer” points in Ni\N̆ k

i after
dividing. Therefore, we have the following recurrence for the
time complexity T (η), given totally η points in f(Ni):

T (η) = T (cη) +O(η), 0 < c < 1,

According to master theorem [1], the average-case complex-
ity of CVX–TEST–DC is O(η log η). Q.E.D.

It can be shown that the average-case of complexity of
CVX–TEST–DC in 2D is onlyO(log η), demonstrating again
the non-trivialness of extending from 2D to 3D.


