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Abstract
Whereas a few physical layer techniques have been pro-

posed to locate a signal source indoors, they all deem mul-
tipath a “curse” and hence take great efforts to cope with
it. Consequently, each sensor only obtains the information
about the direct path; this necessitates a networked sens-
ing system (hence higher system complexity and deployment
cost) with at least three sensors to actually locate a source.

In this paper, we deem multipath a “bless” and thus in-
novatively exploit the power of it. Essentially, with minor
knowledge of the geometry of an indoor space, each signal
path may potentially contribute a new piece of information
to the location of its source. As a result, it is possible to lo-
cate the source with only one hand-held device. At the same
time, the extra information provided by multipath can help
to at least partially reconstruct the geometry of the indoor
space, which enables a floor plan generation process missing
in most of the indoor localization systems.

To demonstrate these ideas, we implement a USRP-based
radio sensor prototype named iLocScan; it can simultane-
ously scan an indoor space (hence generate a plan for it)
and position the signal source in it. Through iLocScan, we
mainly aim to showcase the feasibility of harnessing multi-
path in assisting indoor localization, rather than to rival ex-
isting proposals in terms of localization accuracy. Neverthe-
less, our experiments show that iLocScan offers satisfactory
results on both source localization and space scanning.
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1 Introduction
Since its inception in early this century (due to seminal

work such as RADAR [1]), indoor localization has been
one of the most important research topics in wireless sys-
tem community. This is obviously driven by need from our
real-life experience: finding where other people are and even
oneself is in large scale indoor facilities (e.g., shopping malls
or airport terminals) is becoming increasingly difficult due to
the ever growing of our cites and thus their facilities. Unfor-
tunately, technologies invented in the last decade all bear cru-
cial weaknesses that prevent them from being put into prac-
tice. On one hand, RSSI-based ranging-trilateration meth-
ods (e.g., EZ [3]) may not scale to large indoor spaces as
RSSI can be a bad indicator of distance due to multipath and
shadowing. On the other hand, fingerprint-based approaches
(e.g., Horus [26]) require expensive war-driving to set up a
fingerprint map and are hence not adaptive to layout changes.

Recently, improving the aforementioned approaches us-
ing physical layer information has become a new trend [20,
6, 19]. In particular, both ArrayTrack [6] and CUPID [19]
apply an array of antennas to estimate the Angle-of-Arrival
(AoA) of the direct path, while CUPID [19] takes one step
further by using Channel State Information (CSI) to get more
accurate estimation of the path length. Synthesizing the es-
timations (AoAs or even path lengths) from a few sensors
would allow for an accurate location estimation for the signal
source. Interestingly, both ArrayTrack and CUPID treat re-
flection signal paths as “noises” and make great efforts to re-
move them, while they in fact contain valuable information.
As illustrated in Figure 1(a), whereas the AoA of the direct
path (θd) is what is sought by both ArrayTrack and CUPID,
the AoA of the reflection path (θr), which was thrown away
by the existing approaches, indicates the locations of a mir-
rored image of the signal source with respect of one wall.
Given a known distance from the sensor (an antenna array)1

to the wall, the source location can be estimated with θd and
θr. In reality, multiple reflection paths do exist in an indoor
space, as shown in Figure 1(b). Exploiting all these paths
may allow us to learn not only the location of the source but
also the geometry of the space, whereas this latter piece of
information is missing in almost all indoor localization sys-
tems: a floor plan often needs to be known in advance.

1We use “sensor” and ”antenna array” interchangeably in our paper, as
they refer to the same thing in our context.
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Figure 1. Multipath contains useful information.

Aiming at demonstrating that all these aforementioned
multipath features can be actually put into use in assisting
indoor localization, we construct an antenna array system,
iLocScan, using multiple USRP2 Software Defined Radios
(SDRs). iLocScan simultaneously samples the signals from
its multiple antennas, and the samples are infused into a
computation module running a fine-tuned version of MU-
SIC [18], in order to obtain a set of estimated AoAs (includ-
ing both direct path and multiple reflection paths). iLocScan
then uses a logic module to i) tell which AoA belongs to
which path, if a sufficient number of AoAs have been gath-
ered, and otherwise ii) suggest a possible new location to
gather more AoAs. Finally, all the acquired information are
put together to form a least squares problem that computes
the estimations of various variables (including both source
location and space geometry) as those best fitting the known
parameters. Although our iLocScan prototype is designed to
work with 2.4GHz WiFi signals, it has the potential to track
most microwave signal sources, including mobile phones,
ZigBee, and Bluetooth. In summary, we are making the fol-
lowing major contributions in implementing iLocScan and in
understanding the features of indoor radio signal:
• We engineer iLocScan to fully exploit the power of mul-

tipath rather than to simply avoid it; this enables us to
utilize far more information embedded in the radio sig-
nals propagating indoors.

• We, for the first time, design a system that can simul-
taneously locate a signal source and sketch the plan of
the floor where the source is located at.

• We perform detailed experimental investigations on the
performance of various antenna arrays and the proper-
ties of indoor multipath propagations of radio signal;
the results not only guide us in designing iLocScan but
also have the potential to benefit future developments.

• We implement iLocScan using several USRP2 units,
and we perform extensive experiments on it in various
indoor spaces. The results strongly confirm the feasi-
bility of exploiting multipath for assisting indoor local-
ization and for automatically constructing floor plans.

As iLocScan does not require any support from an already
deployed infrastructure (e.g., a set of WiFi APs), it is very
useful in venues where no infrastructure is available. Though
the current prototype of iLocScan is rather bulky due to the
large size of individual USRP2 units, our long term vista is
to have it integrated into a hand-held device.

The rest of our paper is organized as follows. We first
briefly describe the relevant problem scenarios and introduce
the iLocScan architecture in Section 2. Then we present the
three components of iLocScan respectively in Section 3, 4,
and 5. We report the implementation details and field tests
respectively in Section 6 and 7. We survey related litera-
ture and discuss some future directions in Section 8, before
finally concluding our paper in Section 9.
2 Applications and System Architecture

We first explain the applications scenarios that drive our
system design, then we give a general overview of the sys-
tem architecture of iLocScan. We briefly discuss the design
challenges behind each individual component, but leave the
details to the later sections.
2.1 Finding Signal Sources Indoors

In most of the metropolitan areas, people keep build-
ing tremendous business and entertaining facilities (such as
shopping malls, airport terminals, convention centers), and
they do spend plenty of time inside such indoor spaces for
both working and entertaining. However, the ever growing
complexity of these indoor structures makes it increasingly
troublesome for people to find where themselves are and also
where a person/object-of-interest is. While the majority
of the indoor localization proposals aim to handle the for-
mer problem (i.e., locating users themselves), we set about
tackling the latter issue (i.e., finding someone of interest to
a user). Imaging the scenario where a user walks into an in-
door facility (say an airport terminal) wishes to find another
person, as show in Figure 2, thus our goal is to development
a device that helps the user to achieve this objective.

Alice: Where is Bob?

Bob: Where is Alice?

Figure 2. Searching for a person-of-interest indoors



Obviously, an existing indoor localization system can be a
candidate solution, as the system keeps track of the location
of every user in order to respond to the location queries from
individual users. Unfortunately, it is not necessarily the best
solution due to the following reasons. First of all, there might
not be such a system deployed in the facility. Secondly, tem-
porarily deploying such a system consisting of a collection
of networked sensors2 (e.g., [6, 19]) is too costly and may
disturb other people. Thirdly, even if an indoor localization
system is in position, the person/object-of-interest may not
want to register to the system due to, for example, privacy
concerns. Last but not least, majority of the proposed indoor
localization systems require the floor plans to be ready.

In reality, the pervasive availability of wireless gadgets
almost always makes every person a signal source: he/she
might have a mobile phone, or might even have a device (the
phone or a iPad) connected using WiFi. Assuming the de-
vice IDs are known, tracking the corresponding radio signals
may reveal the locations of the sources. Albeit the similarity
to shooter localization (e.g., [16]), positioning radio source
indoors can be fundamentally different from locating acous-
tic source outdoors: the former has its specific challenges
given the complicated indoor structures and the totally dif-
ferent signal propagation features between sound and radio
signal. In particular, we may not afford to deploy a network
sensing system given the reason discussed earlier.

The major obstacle that prevents us from building a sim-
ple yet fast source localization system is the limited informa-
tion acquired by a single sensor: for example, ArrayTrack [6]
only obtains the AoA of the direct path signal with respect to
each sensor. Consequently, locating a signal source is pos-
sible only if a networked sensing system with multiple syn-
chronized sensors is in position. Fortunately, radio signals
propagating indoors contain far more information than those
have been utilized. As illustrated in Figure 1, information
buried in multipath, which used to be filtered but if properly
utilized, may potentially suggest the location of the source,
as well as the floor plan on which the source is. However, de-
signing such a “two-bird one-stone” system is far from triv-
ial. Whereas antenna arrays have been used recently to detect
the AoA (and even length) of the direct path [6, 19], how to
handle the reflection paths is still an open issue. Moreover,
existing designs unanimously take a linear antenna array, but
which antenna pattern suits the best for exploiting multipath
is yet to be investigated. Finally, the system has to handle
the situation where information at one spot is not sufficient,
possibly due to the complicated indoor structures.

2.2 Our Solution: iLocScan
We hereby present iLocScan as a prototype for simulta-
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designing iLocScan, we intend to deliver some preliminary
results to demonstrate the feasibility of harnessing multipath
for liberating indoor localization from the reliance on any
pre-deployed infrastructure. Although iLocScan may not
achieve the centimeter level of localization accuracy as re-

2Fingerprint-based systems (e.g., [26, 22]) are not very useful in this cir-
cumstance, as they often has a very long lead time required for constructing
the fingerprint map.

ported in [6], the edge of iLocScan is very clear: it requires
a single sensor (instead of multiple networked ones) and it
does not demand the knowledge of the floor plans. The gen-
eral system architecture is presented in Figure 3. Basically,
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Figure 3. iLocScan architecture.

it has a multi-input radio system with an antenna array at its
physical layer (the module at the top). The AoA Computation
Module (ACMod) takes the signals gathered by all the an-
tennas to derive a set of AoAs. Then the AoA Logic Module
(ALMod) attempts to separate direct path from the remain-
ing reflection paths. If it succeeds given a sufficient number
of observed AoAs, the Least Squares Module (LSMod) will
be invoked to estimate the source location, as well as the ge-
ometry of the space. Otherwise the logic unit will indicate a
new spot, which may potentially yield sufficient AoA obser-
vations. In the following, we briefly discuss the challenges
in designing these modules.
2.2.1 Antenna Pattern and AoA Estimation

As the physical component of iLocScan, the antenna ar-
ray is crucial to the performance of our system. In particular,
we are concerned with what antenna pattern to be used for
detecting AoAs. Recent proposals only apply a linear array,
but the aim of those proposals is only to identify the AoA of
the direct path. As iLocScan needs to detect the AoAs of all
directions along which the signal gain is significant, we need
to compare various antenna patterns in terms of their ability
in discriminating these AoAs. Assuming a system with 7 an-
tenna, the following Figure 4 shows four meaningful patterns
that we shall investigate.

Several mature algorithms can be applied to synthesize
the readings gathered by multiple antennas and thus to esti-
mate AoAs. Among them MUSIC [18] is popular as it entails
a rather straightforward implementation. Although directly
using MUSIC has been shown to be effective in identifying
the AoA of the direct path [6, 19], certain fine-tuning has to
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Figure 4. Four antenna patterns.

be applied to make MUSIC suitable for the ACMod of iLoc-
Scan. Essentially, as the original MUSIC algorithm appears
to be designed under an (implicit) assumption that the num-
ber of antennas is much larger than the number of incoming
signals, applying it directly is fine for detecting only the di-
rect path AoA, but may not be adequate for estimating all
potential AoAs.
2.2.2 Extracting Information from AoAs

After obtaining a set of AoAs, the next crucial step is
to tell the AoA of the direct path from others or, in the
worst case, to tell whether this AoA exists or not. Exist-
ing approaches rely on either the stability of AoAs [6] or
the mobility-induced AoA variance [19] to identify the di-
rect path, but they are not suitable for the application scenar-
ios targeted by iLocScan. On one hand, the stability criteria
works only if there is a line-of-sight path between the signal
source and iLocScan, which may not be the case initially.
On the other hand, requiring mobility is not practical in our
applications as the signal source is not controlled by our sys-
tem. Therefore, iLocScan needs the logic module, ALMod,
to reason about the geometry relations among different paths.

As illustrated by Figure 5(a), most indoor spaces have
a rather regular layout. In order to facilitate the reasoning
of AoAs, iLocScan assumes a simple yet powerful model
for indoor spaces: an axis-aligned polygon shown in Fig-
ure 5(b).3 Under such a circumstance, ALMod mainly needs
to reason about two typical situations: a rectangular area
and an L-shaped area, as shown by the hatched areas in Fig-
ure 5(b): it determines which AoA is that of the direct path
in the former case, while it simply senses the latter case and
then suggests a new spot so that iLocScan may potentially
get better readings in terms of AoA by moving there.
2.2.3 Simultaneous Localization and Mapping

After having a sufficient amount of information on the
AoAs of various paths, LSMod puts these constraints to-
gether to make an overdetermined equation system and try
to estimate the variables (source location and space geome-
try). Solving this overdetermined equation system by mini-
mizing the sum of the squares of the errors is a rather stan-
dard procedure, but we need LSMod to autonomously build

3We shall discuss the extension to more general scenarios in Section 8.4.

(a) Floor plan of a typical airport.

(b) An axis-aligned model.

Figure 5. Indoor space model for iLocScan.

the optimization problem and then solve it. Whereas build-
ing an equation system automatically in general is far from
trivial, we can take the advantage of the special structure of
our problem and hence allow LSMod to derive the model by
itself. As an iLocScan user may need to collect information
at different spots, the locations of these spots (relative to the
initial spot) should be the input to LSMod. We let the per-
son who operates our iLocScan prototype to bring a mobile
phone for this purpose: it measures the displacements using
the dead-reckoning method reported in [24, 8].

3 ACMod – Measuring All AoAs At Once
It is well known that microwave signal (including, for ex-

ample, 3G, WiFi, and ZigBee) can be reflected by obstacles
and thus creates multipath in an indoor space. Our iLocScan
differentiates itself from existing proposals in its attempt to
exploit the information inferred by multipath instead of sim-
ply filtering the reflection paths. In this section, we present
the technical details of ACMod (iLocScan’s module on es-
timating AoAs) by answering the challenges raised in Sec-
tion 2.2.1. As some algorithm details have been discussed
in [6], we focus on our fine-tuning of the algorithm, as well
as experimental evaluation of the antenna patterns.

3.1 Preliminary on AoA Estimation
Most wireless communication systems are using QAM to

modulate their signal, so our design is based on the assump-
tion that each symbol carried by wireless signal has an I-Q
representation. Typically, for a complex symbol with ampli-
tude a and frequency f , it can be represented as

ae j(2π f t+ϕ) = acos(2π f t +ϕ)+ jasin(2π f t +ϕ),

where ϕ is the phase of the modulating symbol. On the I-
Q plane, the symbol can be considered as a point rotating
counter-clockwise around the origin, and Φ = 2π f t +ϕ de-
notes the instantaneous phase.



Denoting the distance from the source to the first antenna
by d, the phase of the signal arriving at the receiver will be

ϕ1 = 2πdλ
−1 +ϕ

where λ = c/ f is the wave length of the signal, with c be-
ing the speed of light. Obviously, varying the distance d will
change the phase of the received signal. Now let us take a
second antenna whose distance towards the first antenna is
d̃. Assuming the AoA of the signal with respect to the two-

Transmitter

Antenna1 Antenna2

x

y
d

Figure 6. Detecting the AoA of a signal path using a
two-antenna array. The antennas are aligned with the x-
axis, while the y-axis indicates the forward direction, i.e.,
the detected AoA represents the signed angle counter-
clockwise from y-axis to the signal’s steering direction.

antenna array is θ ∈ (−π/2,π/2] and, without loss of gener-
ality, d� d̃, we may derive the distance from the transmitter
to the second antenna as d + d̃ sinθ. Consequently, there is
a constant offset ∆Φ = 2πsinθd̃λ−1 between the instanta-
neous phases of the two antennas. To eliminate the ambigu-
ity in computing this phase offset, the phase offset should be
less than π. Typically, one may space the two antennas by
half of the wavelength, i.e., d̃ = λ/2, and thus ∆Φ = πsinθ.
As a result, with a measurement of ∆Φ, we can derive the
AoA as θ = arcsin

(
∆Φπ−1

)
. Apparently, the ∆Φ is inde-

pendent of the signal amplitude a and symbol phase ϕ, so
any symbol transmitted by WiFi can be used for the purpose
of estimating AoA. Without loss of generality, we hereafter
assume a = 1 and ϕ = 0 to simplify the exposition.
3.2 Fine-Tuning the MUSIC Algorithm

In reality, what each antenna receives is actually the su-
perposition of several signals (from both direct and reflec-
tion paths) with different AoAs. To handle this, several algo-
rithms have been proposed and among them MUSIC [18] is
the most popular one. However, our experiments show that
the original MUSIC algorithm does not perform very well
when the number of antennas is not far beyond the number
of signal paths. Therefore, we shall first introduce the basics
of MUSIC, and then present our fine-tuning to the algorithm.
3.2.1 MUSIC Primer

Assume there are N antennas in the array, and signals
from M directions are received by the antenna array. Ob-
viously, N should be more than M for eliminating multi-path
ambiguity. Since the signals are time varying, the input of the
MUSIC algorithm is a set of signal samples taken at the N
antennas at the same time. Denote by s = [s1,s2, ...,sM]T the
incident signal from M directions, r = [r1,r2, ...,rN ]

T the sig-
nal vectors received by N antennas, and w= [ω1,ω2, ...,ωN ]

T

the noise vector at the antenna array. The incoming signal of
the i-th antenna can be defined as the combination of the M
signals from different directions plus the noise

ri =
M

∑
k=1

gi(θk)sk +ωi, (1)

where gi(θk) is the gain of the k-th signal received by the i-
th antenna. Overall, r can be characterized by the following
linear model

r = Gs+w (2)

where g(θk) = [g1(θk),g2(θk), · · · ,gN(θk)]
T is the steering

vector for the k-th signal and G = [g(θ1),g(θ2), · · · ,g(θM)].
In order to estimate {θk}k=1,··· ,M from the observed signal

vector r, MUSIC exploits the fact that the correlation among
signals received at different antennas contains the informa-
tion about the directions indicated by the steering vectors.
Denote by Cr the N×N correlation matrix of the received
signal, we have, according to [18],

Cr = GCsG∗+σ
2
wI

where ∗ represents a conjugate transpose, Cs denotes the cor-
relation matrix of the incident signals, and σ2

w is the variance
of the (zero mean and i.i.d.) noise. Apparently, GCsG∗ is
singular and has a rank of M if the number of the incident
signal is less than the number of the antennas (i.e., M < N),
Therefore, if {τ1 ≥ τ2 ≥, · · · ,≥ τN} and {u1,u2, · · · ,uN} are
eigenvalues and corresponding eigenvectors of Cr, we have
τM+1 = τM+2 = · · ·= σ2

w, and

{uM+1,uM+2, ...,uN} ⊥ {g(θ1),g(θ2), ...,g(θM)}. (3)

In other words, the noise space Un = [uM+1,uM+2, ...,uN ] is
orthogonal to the column space of G in an ideal case. How-
ever, this orthogonality may not hold strictly. Therefore, the
original MUSIC algorithm proposes to scan the angle spec-
trum by computing

PMU(θ) =
1

g(θ)∗UnU∗ng(θ)
(4)

The rationale is the following: if θ ∈ {θk}k=1,··· ,M , PMU
would be rather large due to the orthogonality stated above.
3.2.2 MUSIC for iLocScan

As our later comparisons will show, running MUSIC to
detect all AoAs leads to rather unstable results, i.e., the angle
spectrum PMU may differ significantly in time, thus affecting
the accuracy of AoA estimations. In fact, according to the
orthogonality condition in (3), we also have g(θ1), · · · ,g(θM)
exactly lying in the signal space Us spanned by u1, · · · ,uM .
In particular, u1, · · · ,uM are indicating the most correlated
directions. Therefore, we redefine the angle spectrum as

PiLocScan(θ) = g(θ)∗UsU∗s g(θ) (5)

Ideally, PMU and PiLocScan(θ) should be exactly the same.
In reality, if N−M < M, Us contains more information; or
the other way around if N−M >M. As an antenna array may
not contain more than 8 antennas due to size limit while there
could be up to 5 incident signals in an indoor environment,
PiLocScan(θ) (instead of PMU(θ)) should be used to improve



the accuracy of AoA estimations. Figures 7(a) and 7(b) com-
pare the two angle spectrums under the same location ar-
rangement (case): the spectrum generated by PiLocScan(θ) is
apparently more stable and hence yields a clearer indication
of the AoAs. We also use Figure 7(c) to compare the sta-
bility of measurements taken by both algorithms in terms of
the spectrum variance at certain AoAs under several cases:
it is rather straightforward to see the advantage of our tuned
MUSIC in having stable measurements.
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(a) PMU(θ) spectrum.
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(b) PiLocScan(θ) spectrum.
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Figure 7. Comparing the normal and tuned MUSICs.

3.3 Antenna Patterns
A crucial component of iLocScan is its antenna array,

as it determines the quality of information the system may
acquire. Although several patterns are possible (shown in
Figure 4), linear antenna array is often used in the litera-
ture for detecting the AoA of direct path. As our objec-
tive is to identify all possible AoAs, it is necessary to in-
vestigate the performance of these patterns experimentally.
We apply our fine-tuned MUSIC algorithm to each of these
patterns by adapting its steering vector. For example, the

steer vector for linear array is
[
e− j2iπsinθd̃λ−1

]T

i=0,1,··· ,N−1
(according to Section 3.1), and that for circular array is[
e− j2πcos(2iπN−1−θ)Rλ−1

]T

i=0,1,··· ,N−1
with R being the circle

radius, derived based on Figure 8.
One of the important metrics for an antenna array is its

resolution: the minimum discernable angle difference be-
tween two neighboring AoAs. According to the statistics
shown in Table 1, linear has the best resolution, but T-shaped
is very close to it. This is obviously due to the fact that

Table 1. Angle Resolution of Different Antenna Arrays.
Linear Circular Cross T-Shaped

Min Angle Diff
(degree) 18 24 34 21

q

x

y

q

R

Figure 8. Circular antenna array. The blue points de-
noting the antennas are uniformly placed on a circle with
radius R. The signal AoA is θ.

linear uses one more antenna to measure phase differences,
whereas T-shaped has to partially sacrifice it for telling the
sign of an AoA4. We also illustrate in Figure 9 the same three
AoAs recognized by different antenna arrays.
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(a) Linear Array.
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(b) Circular Array.
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(c) Cross Array.
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(d) T-Shaped Array.

Figure 9. Angle spectra of different arrays.

Another related metric is the accuracy of measuring an-
gles. We plot the CDF of angle error results from different
arrays in Figure 10. It is clear that the T-shaped array per-
forms the best; this seems to be related to the rather regular
spectrum produced by it compared with others, as shown in
Figure 9. As the linear array is a 1D pattern, it has a border
effect: AoAs close to zero degree may not be measured ac-
curately. Other 2D patterns avoid such negative effect, but
offers lower resolution. Therefore, our results advocate T-
shaped array: it retains the good properties of linear array
while avoiding its drawback. When using the linear antenna
array in later experiments, we take two measurements at one
spot, with antenna directions perpendicular to each other.
This allows the linear array to obtain much better accuracy
than others (as it yields more readings at one spot), but at the
cost of a higher system latency.

4According to the discussion in Section 3.1, a 1D array cannot distin-
guish AoAs in [−π/2,π/2] from those in (−π,−π/2)∪ (π/2,π].
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arrays.

4 ALMod – AoA Reasoning
Given AoAs measured by ACModule, we need ALMod

to extract information from these measurements, and also to
determine whether further information is needed. Accord-
ing to the axis-aligned model discussed in Section 2.2.2, this
reasoning proceed boils down two specific cases: rectangu-
lar area and L-shaped area. In the following, we first dis-
cuss the basic rules that ALMod applies to reason AoAs in a
rectangular area, then we introduce the algorithm to perform
localization and scanning in a complicated indoor space.

4.1 The Case of A Rectangular Area
As discussed in Section 2.2.2, indoor layouts are often

axis-aligned from a geometric point of view. In particular,
the most elementary unit is a rectangle area whose sides are
aligned with the axes of the coordination system. Therefore,
we first study this basic case where both iLocScan and the
signal source are placed inside such a rectangular area with
all four sides being able to reflect the signals. We also as-
sume the axes of iLocScan are aligned with those of the area.

Our experiments in such a cell show that, except for direct
path signal, only single-reflection signals are strong enough
to be detected by ACMod, whereas those multiple-reflection
ones usually have far less strength and thus may not be
sensed. Under such a circumstance, ACMod should be able
to detect up to five AoAs, and observing the distribution of
the detected AoAs in the four quadrants would allow ALMod
to figure out which one is the direct path. The following are
the reasoning rules:
• 5-AoA: We refer back to Fig. 1(b) for an illustration

of such a case. Basically, there is alway one quadrant
containing three AoAs, so the one in the middle corre-
sponds to the direct path: middle rule hereafter.

• 4-AoA: These are degenerated cases where exactly one
of the following three conditions holds:
C1: iLocScan and the source are co-linear along one

axis: Figure 11(a).

C2: The source is close to one side: Figure 11(b).

C3: iLocScan is close to one side: Figure 11(c).
The consequence is that three AoAs are separated from
the fourth by one axis, so the middle rule applies.

• 3-AoA: These are degenerated cases where two or more
of the C1–C3 hold, as shown by Figure 11(d)–(h). Note
that this includes the case where the same condition

holds twice, i.e., C2 is satisfied twice infers that the
source is at a corner: Figure 11(d). For the cases shown
by Figure 11(d)–(e), the AoA in the middle still cor-
responds to the direct path. However, we cannot draw
a right conclusion due to the ambiguity introduced by
Figure 11(f)-(g). Fortunately, we may break C3 by
moving iLocScan away from the side, which would al-
low a right conclusion to be drawn. As for Figure 11(h),
a side rule applies: the AoA aligned with one axis and
on the majority side corresponds to the direct path.

• 2-AoA: This is a very special case where both C2 and
C3 hold and one of them holds twice, as shown by Fig-
ure 11(i). For this case, ALMod would again suggest
breaking C3. The case of 1-AoA shown in Figure 11(j)
is similar to the 2-AoA case.

In summary, ALMod should be able to identify the di-
rect path using the middle rule under both 5-AoA and 4-AoA
cases. If less AoAs are detected, ALMod check if C3 holds
(which requires user confirmation). If false, the middle rule
still applies; otherwise ALMod alerts the user to break C3.
4.2 A Rectangular Area with Open Side(s)

This case is similar to the closed area case, if we add a
“virtual wall” on the open side and deem the object (iLoc-
Scan or the source) closer to the open side as being “on the
wall”. This implies that either C2 or C3 always holds. Under
this circumstance, 5-AoA does not exist, but all 4-AoA cases
still allow the middle rule to be applied. However, a user can-
not break C3 anymore, leaving the ambiguity between Fig-
ure 11(f) and (g) unsolvable. Nevertheless, the later LSMod
should be able to find contradiction among one of the pos-
sibilities. For example, if the middle rule is applied to Fig-
ure 11(g), the area computed by LSMod will not be axis-
aligned. As for the 2-AoA and 1-AoA cases, the strategy is
to meet C3 by moving iLocScan, hence converting all such
cases to Figure 11(h).
4.3 The L-Shaped Area and Beyond

Given a general axis-aligned polygon (see Figure 5(b)),
there is yet another element differing from the rectangu-
lar area: the L-shaped area. Obviously, if ALMod handles
both situations, it works for any general axis-aligned polygon
spaces, as they can always be reduced to a combination of
multiple L-shaped areas. Therefore, we hereby discuss how
ALMod copes with an arbitrary L-shaped area. When iLoc-
Scan and the source are not co-located in the same branch of
the L-shaped area, none of the above cases apply. The strat-
egy taken by ALMod is to move iLocScan such that we may
get back to the rectangular area case. As shown in Fig. 12,

Figure 12. L-shaped indoor structure.
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Figure 11. AoA patterns. We denote iLocScan and the signal source by blue dot and red star, respectively. We also mark
the coordinate system of the antenna array by red arrows, and the detected AoAs by green arrows.

when all AoAs point towards the positive direction of the
x-axis which also implies the location of the signal source
in some extent. We then move our antenna array along the
positive x-axis towards the hatched area until our antenna ar-
ray reaches the same rectangular area as the signal source;
this brings the situation back to what has been discussed in
Section 4.2. Essentially, ALMod applies a coordinate-wise
searching method, and always moves iLocScan along one
axis directed by the AoA measurements.

5 LSMod – Autonomous Scenario Modeling
and Problem Solving

With the information extracted by ALMod (probably after
a few movements of iLocScan), it is now ready for LSMod
to simultaneously perform source localization and sketching
the indoor structure. The general principle behind LSMod is
to form and then solve a least squares problem so that we fit
the variables to be estimated to the measured AoAs. While
forming and solving such a problem is rather standard for a
human user, we would like the computing system to auto-
matically complete the whole procedure.

Without of loss of generality, LSMod takes the initial spot
of iLocScan to be the origin of its global coordinate sys-
tem. Remember iLocScan also has a local coordinate sys-
tem, used by its antenna array, for measuring AoAs. The
axes of both coordinate systems are aligned, but the local one
always has the origin at the center of the antenna array. Also
note that the user of iLocScan has to (visually) guarantee that
the axes of iLocScan are aligned with those of the targeted
indoor space. In Fig. 13, we use X-Y to denote the global co-
ordinate system, and x-y to denote the local coordinate sys-
tem. In the figure, we take a closed rectangular area as an
example, whose four sides, under X-Y , can be expressed by
Ω = {Ω1 : x = w1, Ω2 : y = l1, Ω3 : x =−w2, Ω4 : y =−l2}
where w1,w2, l1, l2 > 0. Also, the unknown location of the
signal source is p= (xp,yp). The functionality of the LSMod
is to determine these variables.

As iLocScan may need to visit more than one spot in or-
der to acquire sufficient AoA information, we denote by θ̂i

X

Y

Figure 13. Illustrating automatic problem formulation.

the direct path AoA and by Ai = {θi,1, ...,θi,k}1≤k≤4 the set
of the reflection path AoAs, in the i-th measurements at spot
qi = (x̃i, ỹi). For any θi,k ∈ Ai, its reflection wall is denoted
by Ω(θi,k) ∈Ω. As iLocScan is using dead-reckoning to es-
timate the location of later spots relative to the initial one,
qi = (x̃i, ỹi) is the input to LSMod. Now LSMod can express
the AoA-side relationship as follows:

cosθi,k = fi,k(p,w1,w2, l1, l2|qi) =
(p̃i,k−qi) · ey

‖p̃i,k−qi‖2
(6)

where ey is the unit vector along the positive direction of Y -
axis, ‖ · ‖2 denotes the Euclidean norm, and p̃i,k indicates
the mirror source of the targeted signal source with respect
to Ω(θi,k); it can be represented in terms of p and coordi-
nate of Ω(θi,k). Moreover, LSMod introduces the following
equation for the direct path AoA θ̂i:

cos θ̂i = fi(p|qi) =
(p−qi) · ey

‖p−qi‖2
(7)

Based on sufficient AoA observations, LSMod can now



formulate a least squares problem:

minimize
xp,yp,w1,w2,l1,l2

∑
i

∑
k
( fi,k− cosθi,k)

2 +∑
i

(
fi− cos θ̂i

)2
(8)

subject to −w2 ≤ x≤ w1

−l2 ≤ y≤ l1
z,w1,w2, l1, l2 ≥ 0

where {xp,yp,w1,w2, l1, l2} are the variables. We apply the
Trust-Region-Reflective algorithm [4] to solve this optimiza-
tion problem with bound constraints. As the dimension of
the problem depends on the number of walls in an indoor
space and the number of signal sources to be located, the
problem cannot be of very large scale, as we normally aim
at finding a few sources in a space with tens of walls. There-
fore, solving this optimization problem does not lead to a
significant overhead in computing.

6 Implementation Details
In this section, we present the technical details on the con-

struction of our iLocScan prototype. In a nutshell, our hard-
ware platform is based on USRP N210 (hereafter USRP2),
while the software part, including ACMod, ALMod and
LSMod, is implemented using Python and C++ under GNU
Radio on a host computer.
6.1 A Multi-Input Radio System

The physical layer of iLocScan is a multi-input radio con-
sisting of seven USRP2 units shown in Figure 14(a). Each
USRP2 unit is equipped with an RF front end: an SBX
daughter board and an omnidirectional antenna. These RX
USRP2 units are controlled by a host computer through a
Gigabit Ethernet switch, by which the signal samples taken
by the RX USRP2 units are fed back to the software mod-
ules running on the computer. Additionally, the RX USRP2
units synchronize their native clocks through a common ref-
erence of 10 MHz and 1 PPS generated by an external clock,
such that they can sample the incoming signals exactly at the
same moment. Figure 14(b) shows the physical construction
of iLocScan. We use a double-deck trolley to hold the system
for free movements. The USRP2-based antenna array is put
at the upper deck, along with the external clock and the ref-
erence signal source (see Section 6.2 for details). The lower
deck holds the Ethernet switch. As this construction has to
be powered; it has limited our choices of testing sites to a
few research labs (rather than going to the real-life indoor
spaces such as a shopping mall). Fortunately, it is possible to
integrate this system onto a chip in the future, as the distance
between neighboring antennas only needs to be a positive
value below half a wavelength.
6.2 Phase Calibration

Only synchronizing the native clocks of the RX USRP2
units is not sufficient for our application, due to the random
phase shifts caused by the radio’s Phase Locked Loop (PLL)
during the Digital Down Conversion (DDC) at each RF front
end. These unknown phase shifts are added to the signal
phases and thus may cause large estimation errors in AC-
Mod’s AoA detection procedure. To calibrate the RF front
ends, we employ a reference USRP2 unit to transmit cal-
ibration signal (e.g., a 2.4 GHz sinusoidal carrier) to the

USRP N210

External Clock

(10 MHz, 1 PPS)

SplitterAttenuator

Gigabit Ethernet 

Switch
USRP N210

USRP N210

USRP N210

USRP N210

USRP N210

USRP N210

USRP N210

(a) Schematic for the antenna array.

(b) The outlook of iLocScan

Figure 14. System schematic and outlook of iLocScan.

RX USRP2 units through a SMA splitter. Because all the
RX USRP2s are connected to the SMA splitter via cables of
equal length, the incoming calibration signal at each USRP2
device has the same phase. Let us denote by ϕre f and ϕ̃i the
phase of the incoming calibration signal and the phase of the
signal sample at the i-th RX USRP2 unit, respectively. Then
the phase shift caused by DDC at the i-th RX USRP2 unit is
ϕ̃i−ϕre f . As the AoA measuring procedure run by ACMod
is concerned with only the relative phase offsets between the
RX USRP2 units, we simply need to align the phases of the
RX USRP2 units to one of them (e.g., the first RX USRP2
unit). In particular, we can calibrate the i-th RX USRP2 units
by subtracting ϕ̃i−ϕ̃1 from its signal sample, where i= 1...7.
6.3 Detecting WiFi Preamble

To acquire the bearing information of the targeted signal
source, our ACMod needs to overhear the wireless commu-
nication originated from the source. As data packets are
rather arbitrary and hence hard to control, we turn to the
frame preamble. Each IEEE 802.11 frame starts with a short
preamble sequence consisting of ten identical short training
symbols with duration 0.8 µs each. The short preamble is
often fairly robust and stable, so it serves as a good source
of input to ACMod. Besides, as the USRP2 unit has a max-
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Figure 15. An illustration of iLocScan evaluation. This set of experiments is conducted in an 800 m2 research lab. We fix
three signal sources at location T1 , T2, T3. Our iLocScan chooses three spots to perform AoA measures. Each column of
the figures corresponds to one iLocScan spot. The top row marks the measurement sports and also shows the estimated
source locations and the floor plans. Another three rows plot the AoA measures for individual signal sources.

Figure 16. Test site (the 800 m2 research lab) at a glance.

imum sampling frequency of up to 100 MS/s, this implies
that it spends only 100 ns to take a sample from the incoming
signal stream, sampling the short preamble sequence should
be sufficient for the MUSIC algorithm as well as our fine-
tuning version. We implement the preamble detection algo-
rithm [17] in ACMod to extract the short preamble signals
from the 802.11 frames. In particular, we set a buffer at each
USRP2 unit’s frond end. Once the short preamble sequences
are detected in all of the buffers, the samples will be deliv-
ered to ACMod. In our implementation, we take 30 samples
from each preamble for ACMod to perform AoA detection,
which is shown to be adequate to suppress noise and to en-
sure the estimation accuracy.

7 Experimental Evaluations
We have conducted extensive experiments with our iLoc-

Scan prototype at multiple test sites to verify its efficacy and
robustness. In this section, we first briefly discuss the ex-
periment settings, then we report the results on evaluating
iLocScan. As a byproduct, we also obtain a large amount
of data on the reflection properties of various indoor struc-
tures, which deliver insights that can be useful for the future
developments of indoor radio sensing systems.
7.1 Experiment Settings

We perform many tests in three research labs; the floor
plan of one of them is shown in Figure 15 (top row). Tak-
ing the advantage of having the digitized floor plans of these
test sites, we can accurately design the ground truth loca-
tions of the signal sources to be located, and we also have
accurate measurements of the geometry of these sites. We
use three WiFi APs to emulate the signal sources, and we fix
their locations in each of the test sites. In order to distinguish
among these APs, we implement a full WiFi receiver func-
tionality on our iLocScan prototype such that the APs are
identified according to their SSIDs. As our iLocScan is mov-
able, we often perform the initial measurements close to the
entrance, and then choose new spots (if necessary) following
the method discussed in Section 4.3. At each spot, iLocScan



may at most detect 5 AoAs for a given AP; this may not be
sufficient to achieve accurate estimations. Therefore, we of-
ten take two observations at each spot, by moving iLocScan
slightly off the spot for one meter. To keep track of the loca-
tion of iLocScan, we employ a well-studied dead-reckoning
scheme using inertial sensors in a smart phone [8]. Although
the performance of dead-reckoning is subject to error accu-
mulation in inertial sensing, our experiments are not affected
by it due to their relatively small scales. Nonetheless, this is
an issue demanding further studies.

7.2 A Concrete Example
Before diving into the statistical evaluations on the mea-

surement accuracy of our iLocScan, we first use a concrete
example to introduce how iLocScan prototype works in a
real-life scenario and how the measurements have been ob-
tained. As shown in Fig. 15, three targeted signal sources T1,
T2 and T3 are placed arbitrarily in an S-shaped axis-aligned
room, and they all operate on WiFi Channel 6. Recall that
these WiFi APs are using CSMA mechanism to avoid in-
terfering each other, so they do not transmit simultaneously.
Consequently, the angle spectrum measured by iLocScan at
given point in time corresponds only to one AP; this enables
iLocScan to obtain three separated angle spectra shown in
Fig. 15 (the lower three rows). The figures at the top row
are illustrative, so measurement errors demonstrated in them
are rather rough. We also provide a photo in Figure 16 for
part of this axis-aligned room (the entrance part). In order to
avoid the interference of the cubicles, we raise the height of
iLocScan so that the antennas are higher than the cubicles.

As shown in the first column of Fig. 15, our iLocScan
starts to measure AoAs right after entering the space. It de-
tects five AoAs from T1, but only one AoA from T2 and T35.
The AoA information collected at the first spot is sufficient
to locate T1 and to estimate the geometry of the area marked
by the blue box (which is only a partial view of the whole
floor plan with some virtual wall being introduced). We then
move iLocScan forward along the direction suggested by the
detect AoAs of T2 and T3, as shown by the second column of
Fig. 15. In the second spot, iLocScan can detect five AoAs
for both T1 and T2, but still observes only one AoA for T3.
This allows iLocScan to estimate the location of T2, as well
as the two areas marked in blue and green. Combining the
estimated geometry from the first two spots, the left side of
the floor plan has now been fully constructed. The further
collected AoA information on T1 can be used to refine the
localization results we have obtained. Thanks to the direc-
tion implied by the AoA of T3, we move the iLocScan to the
third spot shown in the third column of Fig. 15. At this spot
iLocScan finally detects five AoAs from T3; it is hence able
to locate T3 and to construct the full floor plan.

7.3 Accuracy Evaluations
We first report the measurement accuracy by comparing

our estimations with the ground truth. For localization accu-

5As discussed in Sec. 7.1, we need two observations at a give spot to
achieve better estimations. Due to the space limitation, we only show the
angle spectrum results of the first observation. Note that we plot 38 snap-
shots to demonstrate the stability of observed angle spectra, although it takes
only one snapshot for iLocScan to detect these AoAs.

racy, the metric is the commonly used square-root error. For
the floor plan geometry, the error is the distance shift of an
estimated wall. As our floor plan model and the ground truth
are both axis-aligned polygons, the estimation errors are only
in the form of distance shifts. As shown in Figure 17, the
localization error is less than 4 meters and the geometry er-
ror is less than 5 meters for all antenna patterns. Such an
estimation accuracy is satisfactory in practice. Linear array
(maximum error 3 meters and median error 1.9 meters in lo-
calization) performs far better than others simply because we
take two perpendicular observations right at each spot (see
Section 3.3 for details). This shows that, with linear array,
we can trade detection latency for higher accuracy. Within
the remaining three patterns, T-shaped array appears to have
slightly better performance than the others, for the reason
that have been studied in Section 3.3.
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(b) Floor plan geometry error.

Figure 17. Evaluation of measurement accuracy.

As we have shown in Section 7.2, it is possible that iLoc-
Scan cannot locate the targeted signal sources and scan the
floor plan fully with only a couple of spots. Using the large
amount of data we have collected by randomly putting the
WiFi APs in the three test sites, we show the chance of lo-
cating signal sources as an increasing function of the number
of spots visited by iLocScan in Figure 18. Clearly, whereas
one spot only allows less than 40% of the WiFi APs to be
localized, almost all APs become localizable with up to 4
spots: the small fraction of non-localizable APs are at some
corners, but the lab facilities prevent us from locating iLoc-
Scan properly (see Section 4.1 for details).

Normally, we take two observations per spot; this is how
we obtain all the aforementioned results. One may wonder
if adding more observations (at the same spot but slightly
shifted from each other) would lead to higher accuracy. We
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Figure 18. More spots yield higher chance of locating a
source.

answer the question by showing more accuracy results in
Figure 19. Apparently, the answer is yes, but at the cost of
spending more time on the same spot.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Error (meter)

C
D

F

Empirical CDF

T−shape with 2 observations
T−shape with 3 observations
T−shape with 4 observations

(a) Source localization error.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Error (meter)

C
D

F

Empirical CDF

T−shape with 2 observations
T−shape with 3 observations
T−shape with 4 observations

(b) Floor plan geometry error.

Figure 19. More observations lead to higher accuracy.

7.4 AoA Detection under Varying TX Powers
We aim to design iLocScan to be compatible with a va-

riety of wireless devices, which may have considerable het-
erogeneity, for example, in terms of tx power. Therefore,
we now evaluate the robustness of iLocScan with respect to
AoA detection in face of varying tx power. We set up one
extra USRP2 unit to emulate a WiFi AP in our research lab
and tune its output power from -80 to -40 dBm6. We perform
twenty AoA measures under each tx power setting at a fixed
spot 5 meters away from the WiF AP; the results are reported
in Fig. 20. With extremely low tx powers (-80 to -70 dBm),
the angle spectra are quite unstable so that it is rather diffi-
cult to estimate AoAs out of them. Further increasing the tx
power to -60 dBm significantly stabilizes the angle spectra,

6A normal WiFi AP has a tunable tx power range around 10dBm, which
is not low enough to test iLocScan in extreme cases.

but only with -40 dBm tx power iLocScan may detect all the
three available AoAs. This set of tests suggest that increas-
ing tx power affects the AoA detection in two ways: stabi-
lizing the angle spectrum and improving the AoA resolution.
As -40 dBm is still very low compared with normal WiFi tx
power range, the ability of iLocScan to detect the reflection
paths under this very low tx power has firmly demonstrated
its applicability to real-life scenarios.
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Figure 20. Angle spectra under different tx powers of the
signal source.

7.5 Reflections on Different Materials
Today’s indoor space may be constructed or separated by

various materials. Though it is well known that, given a sig-
nal with certain frequency, different materials exhibit diverse
reflection ability. Although this is currently not the main is-
sue concerning the design and evaluation of our iLocScan,
the large amount of data we have gathered while testing our
system do allow us to shed some light on it. During our
extensive tests, we have come across quite a few different
building materials. For example, internal walls are often
made of concrete, but wall facing outside can be made of
glass. Moreover, metal boards can be used to separate a big
hall into small rooms. Due to space limit, we only report a
few typical results in Fig. 21. The reflection abilities of the
three materials can be derived by comparing the magnitudes
of the direct path signal with those of the reflection paths. We
have observed that, among the three materials, metal has the
strongest reflection ability as the reflection path signal may
reach the same strength as the direct path signal, whereas the
remaining two are comparable in terms of reflection ability.
However, as glass is smoother than concrete on surface, the
refections tend to be slightly more stable.

In general, the reflection abilities of most indoor materi-
als are sufficient for our iLocScan system to detect reflec-
tion path AoAs. However, knowing these properties may
allow iLocScan to be better aware of the surrounding envi-
ronments: it may not only estimate the geometry of an indoor
space, but also figure out how it was constructed. As we shall
discuss in Section 8.4, we are planning to modify iLocScan
into a pure scanning device such that, without a few already
deployed WiFi APs in a building, we may build the floor
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Figure 21. Reflections on concrete wall, glass window, and metal board.

plans automatically. We also notice that antenna polariza-
tion affects signal reflections, and iLocScan works well with
vertically polarized waves. This is fortunately the situation
for many real-life applications.

8 Related Work and Discussions
Though a large amount of indoor localization systems

have been proposed in the last decade, they can be roughly
categorized into two types: range-based [3, 10, 7] and
fingerprint-based [26, 13, 22]. Recently, the performance of
both types have been elevated by exploiting physical layer
information [20, 6, 19]. Although these systems all bear in
mind a rather different application scenario from ours and
none of them has made efforts to exploit multipath, they
still serve as motivation to our developments. In addition,
we briefly discuss some potential directions along which our
iLocScan can be further developed.

8.1 Range-based Indoor Localization
This category includes any methods that involve measur-

ing distance, so it, in a sense, contains AoA-based methods,
because AoA is measured through a combination of rang-
ing and trigonometry. Earlier ranging techniques are mostly
RSSI-based and were used for outdoor environment [23].
They were later adapted to indoor localization [9]: as indoor
signal propagation is far more complicated than outdoors,
the proposal requires to deploy a set of calibrated anchors to
better characterize the relation between the RSSs. The same
approach was later improved by using a mobile anchor that
may sporadically get a GPS location fix indoors [3]. Though
Time-of-Flight (ToF) can be a good indicator of distance,
extremely accurate clock is needed to measure RF ToF [27],
unless one replaces and complements RF with acoustic sig-
nal or ultrasound [12, 10, 7]. Time-of-Arrival (ToA) and
Time Difference of Arrival (TDoA) can also be used for
ranging, but earlier technology only allows them to be mea-
sured for acoustic signal or ultrasound [11]. In theory, TDoA
can be translated to AoA through the induced phase differ-
ence (see Section 3.1), and a system that derives AoA from
WiFi signal has been implemented only recently [25].

8.2 Fingerprint-based Indoor Localization
Compared with range-based approaches, this category ap-

pears to be more prosperous, probably due to the higher lo-
calization accuracy it may deliver in earlier stage [1]. Since
RADAR [1] first performed detailed site survey to build a
fingerprint map based on measured RSSI, a large amount of

proposals appeared and took various approaches to improve
this method: Horus [26] applies a probabilistic approach to
improve the localization accuracy based on WiFi fingerprint,
while other proposals suggest to use different ambient sig-
nals as fingerprints, e.g., light intensity [15] and geomag-
netic field [28]. In general, these approaches may suffer
from the “curse” of wardriving [22], so several later propos-
als all aimed to handle this aspect. Redpin [2] allows users
to identify location themselves when they are wrongly lo-
cated and hence to correctly associate fingerprints to these
locations. OIL [13] applies a similar approach to Redpin,
but it further handles spatial uncertainty and labeling errors
made by users. Zee [14] uses particle filter and dead reck-
oning to identify users walking trace and enriches the finger-
print database with the WiFi data collected along the trace.
ARIEL [5] differentiates rooms through clustering on WiFi
fingerprints collected by randomly moving users.
8.3 Exploiting Physical Layer Information

In recent years, researchers have started to exploit the
fine-grained physical layer information to improve the per-
formance of both categories. In particular, PinLoc [20] ap-
plies high resolution CSI fingerprints to combat the instabil-
ity RSSI fingerprint, at the cost of higher complexity in con-
structing a fingerprint map. Both ArrayTrack [6] and CU-
PID [19] use an antenna array to estimate the AoA of the
direct path, and CUPID [19] further performs ranging us-
ing CSI. As they both remove the reflection signal paths, the
limited information acquired by each antenna array entails a
set of such arrays whose individual measurements can then
be synthesized to reach a location estimation for the signal
source. Although the theoretical bounds of exploiting multi-
path have been recently studied [21], our iLocScan is the first
system prototype to realize such ideas in the 2.4GHz band.
8.4 Potential Future Developments

Our current iLocScan prototype is designed to trace only
WiFi signals, but its application scope should be broader than
this. As other microwave signals do share the similar prop-
agation features as WiFi signals, iLocScan should have the
potential to locate devices emitting those signals. We are
on the way of engineering iLocScan to handle 3G/4G and
ZigBee signals so that it may locate person/object-of-interest
equipped with other types of radios.

Another interesting aspect of iLocScan is its ability to
build a floor plan using the measured AoAs. As roughly il-
lustrated in Figure 15 (the top row), with three fixed WiFi



APs, moving iLocScan to three spots can sketch the S-
shaped floor plan. In fact, most existing indoor localization
systems simply assume the floor plans are available, but it
is rarely the case in reality. So we are planning to extend
iLocScan so that, with a few already deployed WiFi APs in
a building, iLocScan can build all floor maps automatically.
Potentials challenges (also valid for iLocScan itself) are i)
to handle floor plans beyond the axis-aligned model, and ii)
to deal with the interference from moving crowd. A possi-
ble solution to i) is to model any non-axis-aligned walls as
45◦ slanted ones and absorb the incurred errors into the an-
gle measurement errors of the antenna array. The temporary
makeshift that we adopt currently to tackle ii) is to take a se-
quence of measurements at a given spot so that the variance
caused by moving objects can be filtered as outliers.
9 Conclusions

While the majority of indoor localization systems aim at
locating the users themselves based on known floor plans, we
aim to locate a signal source in an unknown indoor space. To
this end, we have innovatively exploited the power of mul-
tipath (which is often “antagonized” by wireless system re-
searchers) and hence proposed a system called iLocScan; it
is able to locate a signal source in an indoor space while
constructing the floor map of the targeted space at the same
time. Leveraging the ability of antenna arrays in detecting
the Angle-of-Arrival (AoA) of a signal path, we have im-
plemented iLocScan to the point that it can simultaneously
measure all AoAs induced by an indoor wireless transmis-
sion (due to its direct path and multiple reflection paths).
This has involved fine-tuning a well known AoA detection
algorithm and investigating the features of various array pat-
terns. We have also designed a logic module for iLocScan to
judge which AoA corresponds to the direct path and whether
the number of observed AoAs is a sufficient, as well as an au-
tonomous problem formulation and solving module to fit the
variables (source location and space geometry) to the AoAs.
To demonstrate the viability of these ideas, we have imple-
mented an iLocScan prototype using USRP2 units. Our ex-
tensive experiments with this prototype have strongly con-
firmed the efficacy of iLocScan and also delivered useful in-
sights on indoor signal reflection and propagation.
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