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Abstract

Sensor deployment is an important aspect of network architecture for Wire-
less Sensor Networks (WSNs). Although many solutions to mobile sensors
deployment have been proposed, controlling mobile sensors with directional
sensing ability towards optimal coverage remains to be an open problem.
In this paper, we take the initiative to handle the Coverage Maximizing
Mobile Sensor Deployment Problem (CMMSDP) with directional and arbi-
trarily oriented sensors. Our proposal consists of two algorithms. The first
one, Concurrent Rotation and Motion Control (CRMC), is a localized iter-
ative algorithm derived from optimality conditions, so it aims at reaching
local maximum. The second algorithm, Staged Rotation and Motion Con-
trol (SRMC), decouples rotation and motion controls in order to reduce the
computation complexity with slight sacrifice in optimality. We derive opti-
mality and complexity results for both algorithms. We also implement our
algorithms in TOSSIM and evaluate them against commonly used metrics.
The promising results confirm the absolute feasibility of our proposals.
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1. Introduction

The deployment of sensor nodes is very crucial to the functionalities of
Wireless Sensor Networks (WSNs) [1]. Specifically, a deployment should
guarantee area of interest is largely covered. However, a well arranged de-
ployment, on one hand, leads to a prohibitive cost due to the large scale of
a WSN, and on the other hand, is lack of adaptability to the monitoring
of time-variant events, which has forced many of WSN related proposals to
resort to random deployments. Although random deployments may satisfy
certain coverage requirements given an over-provisioned node density, the in-
curred cost is huge, while the lack of adaptability to event dynamics remains
to be an inevitable issue.

To tackle these challenges, we adopt sensor nodes that are equipped with
mobility mechanisms, e.g., wheels driven by DC motors, compass and bumper
[2, 3]. As sensor nodes can move towards desirable locations, the initial ran-
dom deployments can be improved by properly adjusting the locations of the
nodes [4, 5, 6]. Such an autonomous deployment strategy with the help of
mobile sensor nodes enables flexible re-deployment when the physical phe-
nomena of interest vary during surveillance, or the network condition changes
(e.g., in the face of node failures). However, the existing proposals on au-
tonomous deployment only consider sensor nodes with omnidirectional sen-
sors and boolean sensing ranges, hence a disk centered at each node is used
to characterize the coverage of that node [4, 7, 5, 8]. As real sensors may have
certain directional features (e.g., radar or acoustic sensors [9, 10]) and the
sensing capability of a sensor often decreases continuously with an increas-
ing distance from the sensor rather than remaining constant but suddenly
becoming zero somewhere [11], specific deployment mechanism is expected.

In this paper, we take the initiative to deal with the Coverage Maximizing
Mobile Sensor Deployment Problem (CMMSDP), under the assumptions of
directional sensors with a general sensitivity distribution function. We aim
at moving nodes to maximize coverage, which is indicated by an objective
function. For omnidirectional sensors, this optimization problem is partially
handled by Centroidal Voronoi Tessellations (CVT) [11, 12, 13]. However,
directional sensors with arbitrary orientations lead to a Voronoi tessellation
consisting of non-convex and even disconnected (in topological sense) cells
with curved boundaries. This has made it highly nontrivial to obtain CVT
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through a localized control algorithm, and the optimality of CVT may also
become questionable.

In response to these challenges, we propose two autonomous deployment
algorithms to control the node movements and orientations using only lo-
cal information, based on a characterization of the optimal solutions to
CMMSDP. Our first algorithm is CRMC (Concurrent Rotation and Motion
Control), it simultaneously tunes the orientations and locations of nodes
through a localized iteration, so that it terminates with a local maximum
coverage. In order to improve the algorithm efficiency, our second algorithm
SRMC (Staged Rotation and Motion Control) first unifies the orientations
of the sensor nodes and then conducts the motions of the nodes. As a re-
sult, SRMC is more efficient in terms of computations. To the best of our
knowledge, our proposal is the first to handle CMMSDP with directional and
arbitrarily oriented sensors.

The remaining of this paper is organized as follows. We discuss existing
literature in Sec. 2. Then we present our model and define our problems in
Sec. 3, and analyze the theoretical characterization of the optimal solution
in Sec. 4. We present CRMC and SRMC in Sec. 5 and 6, respectively. We
evaluate the performance of our algorithms and compare them with another
possible solution in Sec. 7. Finally, we conclude our paper in Sec. 8.

2. Related Work

There is a vast body of recent work related to sensor deployments for area
coverage, including joint coverage and connectivity solutions to static sensor
deployments (e.g., [14, 15, 16]) and intermittent coverage with mobile nodes
(e.g, [17, 18, 19]). However, we focus only on those about deploying WSNs
for better constant coverage using mobile nodes.

2.1. Moving Node for Improving Coverage

This set of proposals aim at mobile deployment to only achieve better
coverage, assuming (implicitly or explicitly) that the transmission range is
sufficiently large so that coverage implies connectivity. Howard et al. [20] are
among the first to devise the virtual force approach for mobile deployment.
The idea is motivated by the attributes of electromagnetic particles: they
push each other away when too close, while attracting each other when too
far. This idea was extended by later proposals to combat its oscillatory
behavior [5]. Wang et al. [4] pioneered in applying Voronoi diagrams to

3



control mobility. They propose two methods, VOR and Minimax: while the
former moves a node towards the farthest Voronoi vertex, the latter makes a
node stop at the Chebyshev center (the center of the smallest circumscribed
circle of the Voronoi cell). The experiments in [4] show that Voronoi-based
approaches often perform better than the virtual force approach. CVT has
recently been extended in [21] by jointly optimizing coverage and (the sensor
nodes’) moving distances in each iteration for the purpose of energy efficiency.
Similarly, we also design our algorithm to carefully determine the step sizes
of each iteration, aiming to ensure coverage optimality as well as affordable
energy cost in moving nodes (see Sec. 5.3).

Whereas the aforementioned proposals always assume a circular sensing
area with identical radius for all node, Bartolini et al. [5] apply Voronoi-
Laguerre geometry [22] to deal with heterogenous sensing radius. Under
heterogeneous sensing ranges, the optimality of Voronoi partition for fixed
sensor locations [23] is compromised under Euclidean metric. Fortunately,
by redefining the distance as power distance [24] (hence leading to Voronoi
diagram in Laguerre geometry [22]), Bartolini et al. are able to retain certain
properties of Voronoi diagram, and they hence reuse the Minimax method
[4] to control mobility. Our later proposal is similar to [5], in the sense
that we also exploit directional features of sensing model such that classical
theories/algorithms for standard Voronoi diagrams can be applied.

Different from the above proposals assuming omnidirectional sensors (hence
circular sensing areas), [25] proposes mobility control algorithms to address
the area coverage problem under a sector-based directional sensing model.
It sticks to boolean sensing range and has the orientations of the directional
sensors fixed in the deployment strategy; thereby lacking of practicality and
optimality. In contrast, we present in this paper a more practical and generic
sensing model, such that we can take into account both the continuity and
directionality of sensing ranges, while guaranteeing the resolvability and op-
timality of our proposed solutions to the area coverage problem.

2.2. Integrated Coverage and Connectivity

When transmission range is roughly in the same scale of sensing range,
the mobility control algorithm has to take network connectivity into account.
However, as connectivity is a global property of a WSN, it cannot be reli-
ably maintained by a localized algorithm without introducing redundancy
(hence sacrificing coverage) [26]. As a result, the existing proposals all rely
on certain global coordination mechanism and/or a geographic lattice known
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to all nodes (e.g., [27, 7]). In particular, an underlying spanning topology
(a backbone or tree) is constructed to maintain a global connectivity with,
for example, a sink [27]. In addition, a coordinate system and a related
lattice structure (hexagonal lattice for [27] and parallel lines for [7]) is main-
tained and is globally known; this helps to gradually “grow” a regular node
deployment.

Although using a spanning topology is meaningful as the whole WSN
always needs to connect to a sink, the requirement on a global coordinate
system demands an expensive localization system that is not always possible.
As our solution leads to an almost regular node deployment, connectivity is
guaranteed by properly choosing a node density during the initial random
deployment. Otherwise a spanning topology can be maintained along with
our mobility control algorithms. Therefore, we do not involve connectivity in
our optimization framework, though we still deal with the problems resulting
from a limited transmission range.

3. Model, Problem, and Theory

We first present our system model in Sec. 3.1. We then review the basic
theories for optimal deployment of omnidirectional sensors in Sec. 3.2, before
formally formulating our optimization problem for maximizing coverage using
directional mobile sensors in Sec. 3.3.

3.1. System Model

We assume a WSN consisting of a set N = {n1, · · · , nN} of sensor nodes,
and |N | = N . The nodes are initially deployed arbitrarily on a 2D targeted
area A. 1 We also make the following assumptions on sensor nodes:

A1: Each node is equipped with certain mechanisms (e.g., motors plus
wheels) to gradually changes its location [2] as well as bumper sen-
sors to detect and avoid obstacles in the targeted area [3].

A2: We hereby focus on a more practical sensing model where the sensing
capability of a sensor is attenuated continuously with increasing dis-
tance [11] and the attenuation is supposed to be anisotropic [28] (Sec-
tion 5.2.4: Variogram models, p70). Therefore, to characterize such

1Our solution is readily extensible to 3D surface or volume in theory, but our scope is
restricted to 2D planes in this paper.
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(a) Directional model (b) Omnidirectional model

Figure 1: Two sensing models for sensor nodes.

a sensing model, we define a Sensitivity Distribution Function (SDF)
for the i-th sensor at location ui ∈ A as f(‖v − ui‖2Pi

), where v ∈ A,
‖v − ui‖2Pi

= (v − ui)TP T
i Pi(v − ui), and

Pi =

[
a 0
0 b

]
·
[

cos θi sin θi
− sin θi cos θi

]
, (1)

with a, b > 0 and θi ∈ [0, π) being the sensor orientation. In fact,
‖v − ui‖2Pi

can be treated as the distance from ui to v under a direc-
tional metric Pi. We assume that f(·) is a non-increasing function
with respect to ‖v − ui‖2Pi

, to imply the attenuation of the sensing
capability of node ni according to increasing distance. Note that, we
only require a SDF f(·) to be non-increasing, so it also includes the
boolean-range sensing model as a special case, where f(·) is an indi-
cator function of the sensing range. We illustrate a SDF in Fig. 1 (a).
If a = b, P T

i Pi = a2I where I is the identity matrix. The sensor be-
comes omnidirectional, as shown by Fig. 1 (b). It can be viewed as a
generalization of continuous omnidirectional sensing model with both
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directional feature and analytical tractability especially for our area
coverage problem.

A3: Nodes all have an identical transmission range r, and we denote by
N (ni) the nodes within the transmission range of node ni, i.e., N (ni)
is the set of one-hop neighbors of node ni.

A4: A node ni has a gyroscope to get aware of its orientation θi. It can use
ranging information of N (ni) to construct a local coordinate system
for mobility control (e.g. [29]).

3.2. Preliminary Theories for Omnidirectional Sensors

As mentioned above, the omnidirectional sensing model actually can be
treated as a special case of our directional one. Therefore, before diving into
our problem formulation based on our directional sensing model, we first
review some basic theories closely related to omnidirectional sensors.

With omnidirectional sensors, we do not have to take into account {θi},
such that the deployment problem actually is simpler than the case of direc-
tional ones. In order to allocate sensors to properly cover the given targeted
region A, the basic thread of deploying omnidirectional sensors is first to par-
tition A into disjoint area {Ai}i=1,··· ,N such that A =

⋃
iAi and Ai

⋂
Aj = ∅

(with i 6= j), and then to allocate each sensor node ni to one of the areas.
We assign an Event Density Function (EDF) ψ : A → R+ upon the targeted
region A; it indicates the importance of different parts in A. According to
our definition of SDF, our aim is to maximize the following coverage function

Comni({Ai}, {ui}) =
N∑
i=1

∫
Ai

f(‖v − ui‖2`2)ψ(v)dv

where ‖ · ‖2`2 denotes Euclidean norm as a = b for individual sensor nodes in
this case.

The optimal solutions thus can be characterized by the following two
propositions [12, 13].

Proposition 1. If we fix the sensor locations {ui}, the optimal partition of
A is the Voronoi partition V(A) = {V1, · · · ,VN} generated by {ui},

Vi =
{
v ∈ A|‖v − ui‖2`2 ≤ ‖v − uj‖2`2 ,∀j 6= i

}
.
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While this proposition states the optimality of Voronoi partition given
fixed sensor locations, the next one pinpoints the best Voronoi partitions,
under rather restrictive conditions.

Proposition 2. Let f(x) = −x, and define the centroid CV of a region

V ∈ Rd (d ≥ 2) as
[∫
V ψ(v)dv

]−1 [∫
V vψ(v)dv

]
then Comni({Vi}, {ui}) is max-

imized only if {Vi} is generated by {ui = CVi} for i = 1, · · · , N .

These two properties motivate the well known Lloyd’s iteration and its
gradient-based extensions [12], which basically repeat the two steps of (i)
Voronoi partition generated by {ui} and (ii) moving {ui} to (or towards
with a fractional step size) {CVi}. We illustrate the initial and optimal
deployments in Fig. 2. However, as the optimality requires f(x) = −x, we

(a) Initial deployment (b) Optimal deployment

Figure 2: Voronoi cells for omnidirectional sensors.

need to tackle this issue (even for omnidirectional sensors) in order to apply
general SDFs.

3.3. Problem Formulation

We hereby formulate our Coverage Maximizing Mobile Sensor Deploy-
ment Problem (CMMSDP) under our directional sensing model. Similar
with the above case of handling omnidirectional sensors, we partition the
targeted region A into a set of N disjoint areas {Ai}i=1,··· ,N . We allocate
node ni into Ai (tune its location ui ∈ Ai and orientation θi) and let it
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take care of sensing Ai. We define the coverage function C(·) for directional
sensing model as

C({Ai}, {ui}, {θi}) =
N∑
i=1

∫
Ai

f(‖v − ui‖2Pi
)ψ(v)dv, (2)

hence our CMMSDP is given by

maximize
{Ai},{ui},{θi}

C({Ai}, {ui}, {θi}) (3)

subject to
⋃

i
Ai = A; Ai

⋂
Aj = ∅; ui ∈ Ai (4)

The aim is to determine the variables {Ai}, {ui} and {θi} such that the
coverage to the targeted area is maximized.

Although our CMMSDP falls into the so-called location optimization
framework [23], the introduction of sensor orientations θi results in a new
distance measure ‖v−ui‖2Pi

to replace the commonly used Euclidean metric,
which makes our problem fairly unique and useful, especially considering the
resulting sensing model is more generic and thus can convey better sensing
characteristics than omnidirectional or binary sensing models. Nevertheless,
as we will show in later sections, the new variables {θi} also lead to consider-
able challenges, which we have to address when designing specific algorithms.

4. The Optimal Solutions for Directional Sensors

Inspired by the theories of designing optimal deployment solutions for
omnidirectional sensors, we present characterizations for directional sensors
in this section, in order to motivate our theoretical results and algorithms
for CMMSDP. As the objective function of CMMSDP C({Ai}, {ui}, {θi}) is
generally not concave even with omnidirectional sensors, we are interested in
deriving a local maximum which is sufficient for practical use.

4.1. Arbitrary SDFs

We first show that, under certain conditions, the centroids {CVi} also
maximize C({Vi}, {ui}) with an arbitrary f(x).

Proposition 3. If, for i = 1, · · · , N , Vi is rotational symmetry of order
2 and the centroid CVi is the rotocenter, C({Vi}, {ui}) is maximized for an
arbitrary f(x) only if {Vi} is generated by {ui} and ui = CVi ,∀i = 1, · · · , N .
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Proof. The necessary condition for {u∗i } to maximize C({Vi}, {ui}) is∫
Vi
f ′
(
‖v − ui‖2`2

)
(v − ui)ψ(v)dv

∣∣∣∣
ui=u∗i

= 0,∀i = 1, · · · , N.

We also know that
∫
Vi(v − CVi)ψ(v)dv = 0 or

∫ π
0

∫
S(φ) vr,φψ(vr,φ)rdrdφ = 0

under polar coordinates centered at CVi , where S(φ) is a pair of sectors
in Vi between [φ, φ + dφ) and [π + φ, π + φ + dφ), and vr,φ contains both
[r cosφ, r sinφ] and [r cos(π + φ), r sin(π + φ)]. We illustrate the latter inte-
gration under polar coordinates in Fig. 3(a). When Vi is rotational symmetry

�i

C�i
�

d�

rdrd� �i

C�i
�

d�

S(�)
S(�)

rdrd�

(a) An arbitrary area (b) An area rotational symmetry of order 2

Figure 3: For an arbitrary area, the centroid CVi does not guarantee a zero inner integra-
tion (a). However, if an area is rotational symmetry of order 2, the inner integration equals
zero for any S(φ) (b). Therefore, if the symmetry is preserved by additional operator (e.g.,
f(·) or Pi), the centroid remains intact under these operations.

of order 2 and CVi is at the rotocenter, we have (under polar coordinates cen-
tered at CVi) ∫

S(φ)
f ′(‖vr,φ‖2`2)vr,φψ(vr,φ)rdr = 0,

for all i = 1, · · · , N , which is roughly explained by Fig. 3 (b). Therefore,
{ui} = {CVi} is the the necessary condition for maximizing C({Vi}, {ui}).

Recall that, for omnidirectional sensors, the outcome of Lloyd’s iter-
ation (and its variances) leads to almost symmetric Voronoi cells [12, 13],
especially when ψ(v) is a constant (as assumed in [4]), as shown by Fig. 2
(b). These suggest that the conditions required by Proposition 3 are al-
most always satisfied, thus Lloyd’s iteration does lead to local maximum or
nearly maximum even if the cells are slightly out of symmetry.
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4.2. Optimality Conditions

We are now ready to characterize the optimal solutions of CMMSDP
under directional sensing model, or equivalently the new metric ‖v − ui‖2Pi

.
Firstly, we have the optimality statement for Voronoi partition under fixed
sensor locations and orientations, similar to Proposition 1.

Proposition 4. If we fix the sensor locations {ui}i=1,··· ,N and orientations
{θi}i=1,··· ,N , the optimal partition of A is the Voronoi partition V(A) =
{V1, · · · ,VN} generated by {ui}i=1,··· ,N under {Pi}i=1,··· ,N , i.e.,

Vi =
{
v ∈ A|‖v − ui‖2Pi

≤ ‖v − uj‖2Pj
,∀j 6= i

}
.

We omit the proof as it immediately follows from that f(·) is non-increasing
in ‖v − ui‖2Pi

. We also have the counterpart of Proposition 2 as follow,
indicating the best Voronoi partitions under a specific SDF.

Proposition 5. Assume Vi is rotational symmetry of order 2 and the cen-
troid CVi is the rotocenter, then the objective function C({Vi}, {ui}, {θi})
is maximized only if {Vi} is generated by {ui = CVi} under {Pi}, for
∀i = 1, · · · , N .

Proof. The necessary condition for {u∗i } to maximize C({Vi}, {ui}, {θi}) is∫
Vi
f ′
(
‖v − ui‖2Pi

)
Pi(v − ui)ψ(v)dv

∣∣∣∣
ui=u∗i

= 0,∀i = 1, · · · , N.

We also have the centroidal condition
∫
Vi(v−CVi)ψ(v)dv = 0,∀i = 1, · · · , N .

Following a similar reasoning of the previous proof (for Proposition 3) and
that Pi preserves rotational symmetry of even orders, we can show that the
{ui} = {CVi} implies the necessary optimality condition if Vi is rotational
symmetry of order 2 and CVi is at the rotocenter.

This proposition differs from Proposition 2 in that it does not assume
a specific f(·) but demands a particular geometric property of Vi.

The above results give us two optimality conditions: the optimal parti-
tion with fixed node locations and orientations, as well as the optimal node
locations with fixed partition and orientations. What are the optimal orien-
tations given an optimal Voronoi partition and optimal sensor locations?
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Proposition 6. If we fix the sensor locations {ui} and the Voronoi parti-
tion {Vi} generated by {ui} such that ui = CVi, then C({Vi}, {CVi}, {θi}) is
maximized only if∫

Vi
f ′
(
‖v − CVi‖2Pi

) ∂‖v − CVi‖2Pi

∂θi
ψ(v)dv

∣∣∣∣
θi=θ∗i

= 0, (5)

for i = 1, · · · , N , where ‖v − CVi‖2Pi
is a scalar function of θi.

The proof is omitted as it is just the first-order optimality condition
with respect to θi. However, this optimality condition demands a careful
interpretation, as it is far less straightforward as the other two. If we combine
f ′(‖v−CVi‖2Pi

) and ψ(v) to form a virtual EDF of the mass Vi, the optimality
condition states that the centroid of Vi is preserved under transform Pi.
Moreover, obtaining θ∗i can be further simplified under certain geometric
property of Vi.

Definition 1. For a mass Vi with an EDF ψ defined upon, if Vi is rotational
symmetry of order 2 and the centroid CVi is the rotocenter, then we term wi
the main axis of Vi if

wi = arg max
‖w‖`2=1

∫
Vi

(wT (v − CVi))2ψ(v)dv, (6)

and we denote by βi ∈ [0, π) the orientation of wi.

Proposition 7. If Vi is rotational symmetry of order 2 and the centroid CVi
is the rotocenter, θ∗i = βi, ∀i = 1, ..., N .

Proof. Changing the integration to polar coordinates centered at CVi , we
have ∫

Vi
f ′
(
‖v − CVi‖2Pi

) ∂‖v − CVi‖2Pi

∂θi
ψ(v)dv

=

∫
r

r3
∫ 2π

0

f ′
(
‖vr,φ‖2Pi

)
g(φ, θi)ψ(vr,φ)drdφ, (7)

where vr,φ = [r cosφ, r sinφ], and g(φ, θi) = (a2 − b2) sin 2(φ − θi). We also
redefine the main axis under the polar coordinates centered at CVi as follows,

βi = arg max
θw

∫
r

r3
∫ 2π

0

cos2(φ− θw)dφdr
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where θw is the orientation of an arbitrary unit vector w. Then, according
to the first-order optimality condition with respect to θw, we have∫

r

r3
∫ 2π

0

sin 2(φ− θw)ψ(vr,φ)drdφ

∣∣∣∣
θw=βi

= 0, (8)

As shown in Fig. 3 (b), both the above integrations (7) and (8) consist of
two parts: one within the inscribed disk of Vi (the green area) and another
outside (e.g., along the red strips whose angles are in [γ1, γ2]∪[γ1+π, γ2+π]).
Both the integrations upon the former part are always zero, regardless of the
variables θi and θw. For the second part, the inner integrations are carried
out only within [γ1, γ2]∪[γ1+π, γ2+π]. Given that f(·) preserves the rotation
symmetry of order 2, our careful derivation shows that this part is zero for
(7) and (8) if θi = θw = (γ1 + γ2)/2, hence we have θ∗i = βi.

In Sec. 5, we will apply these optimality conditions to design a localized
iterative algorithm to obtain local maximum of CMMSDP.

4.3. Voronoi Cells under New Metric

Under the new directional metric ‖ · ‖2Pi
, the representation of Voronoi

cells is more complicated than their Euclidean counterparts.

Proposition 8. Under the metric ‖·‖2Pi
, the boundaries of Voronoi cells {Vi}

consist of piecewise hyperbolas.

Proof. Given two node locations, ui and uj, with orientation angles θi and
θj respectively. Let Mi = P T

i Pi, the bisector between ui and uj is given by
the following quadratic equation

g(x) = (x− ui)TMi(x− ui)− (x− uj)TMj(x− uj) = 0.

It is well known that, under the Cartesian coordinate system, the curve
of a quadratic equation in 2D is always a conic section. Furthermore, a
conic section can be classified as ellipse, parabola, or hyperbola, according to
the sign of the determinant 4 (<,=, >, respectively). A careful derivation
suggests ∆ = 4(a− b)2 sin2(θi − θj) ≥ 0 for our case. Therefore, the bisector
of any two nodes is a hyperbola. As there are two branches of a hyperbola,
the branch that serves as the bisector is the one that “separates” ui and uj,
i.e., (x− ui)P T

i Pj(x− uj) < 0, for any x on the bisector.
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However, it is interesting to note that, by unifying the orientation, the
computations for constructing Voronoi cells can be highly simplified.

Proposition 9. If all sensors have the same orientation, Voronoi cells {Vi}
generated according to ‖ · ‖2Pi

are all convex polytopes.

Proof. It follows from the above proof that, when θi = θj, the equation
becomes x − ui = x − uj in a linearly transformed space by Pi. So the
bisector is a line and the Voronoi cells are all convex polytopes.

We plot the Voronoi cells for both arbitrarily and uniformly oriented
sensors in Fig. 4. While arbitrary orientations may result in discontinuous
distorted Voronoi cells: the hatching areas in Fig. 4 (a), unifying the orien-
tation leads to continuous polygonal cells in Fig. 4 (b). Later in Sec. 6, we
use this property to devise a light-weight solution to CMMSDP.

(a) Arbitrarily oriented sensors (b) Uniformly oriented sensors

Figure 4: Illustrating the directional Voronoi cells. The ellipses are only used to indicate
directionality, rather than demarcating the sensing range.

5. Concurrent Rotation and Motion Control

In this section, we derive a control law to concurrently drive sensor rota-
tion and motion. This control process is performed in an iterative manner
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by each node, relying only on locally available information (i.e., the infor-
mation acquired from its neighbors). We first present the control process in
Algorithm 1, then explain it in detail.

Algorithm 1: CRMC

Input: For each ni ∈ N , initial position u0i and orientation θ0i , step
size α, stopping tolerance ε

Output: {u∗i } and {θ∗i }
1 For every node ni ∈ N periodically (every τ ms):
2 Construct a local coordinate system using the mutual distances among
N (ni) ∪ {ni}

3 Broadcast θi to N (ni)
4 Compute the Voronoi cell Vi, centroid CVi , and main axis orientation
βi

5 if |ui − CVi| > ε, CVi,θi(ui) > CVi,θi [ui + α(CVi − ui)] then
u+i ← ui + α(CVi − ui) ;

6 if |θi − βi| > ε, CVi,u+i (θi) > CVi,u+i [θi + α(βi − θi)] then

θ+i ← θi + α(βi − θi) ;

5.1. Building Local Coordinate Systems

According to assumption A4, a node ni can obtain the distances among
nodes in N (ni) through message exchanges, based on which, a certain 2D
embedding technique (e.g., [29]) is applied to construct a local coordinate
system (line 2). This step is not necessary if other positioning devices (e.g.
GPS) are equipped.

5.2. Voronoi Partition for Directional Sensors

In each iteration, every sensor node ni broadcasts its current orientation
θi to its one-hop neighbors N (ni) (line 3). Being aware of location and
orientation information, each node ni may calculate the bisectors between
itself and it neighbors. According to Proposition 8, the bisectors between
directional sensors are hyperbolas. Therefore, what a node calculates are the
parametric forms of the bisectors and their intersections. This information
is sufficient to characterize the Voronoi partition {Vi} (line 4). This step is
motivated by the optimality condition stated in Proposition 4.
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Similar with [4], when certain bisectors are hidden from a node ni because
another node that determines this bisector is beyond the communication
range of ni, the node ni closes the open sides of its Voronoi cell by using the
transmission range as a boundary. On the other hand, as we will shown in
Sec. 5.3, we carefully control the step sizes for the nodes to move towards the
centroids; hence this problem does not constitute a threat to the algorithm
convergence.

Another problem is the possible discontinuity in cells, as shown in Fig. 4(a).
In general, the main component of Vi (i.e., the one that contains ui) is much
larger than other components (should they exist). Moreover, when the func-
tion f(·) decreases sufficiently over a large distance, approximating a Voronoi
cell by its main component numerically introduces no error. As we will show
in Sec. 7, our algorithm finally outputs a regular deployment where there is
no disconnected Voronoi cell.

5.3. Motion Control Towards Centroids

The motion control (lines 4 and 5) follows directly from the optimality
condition stated in Proposition 5. The major difference between our con-
trol process and the Centroidal Voronoi Tessellations (CVT) [13] for omnidi-
rectional sensors is the following. For motion control based on CVT (which
mostly assume f(x) = −x), the centroid of Vi is indeed the local maximum
for each iteration. Therefore, the control law proposed in [13] can be consid-
ered as a steepest descent approach. However, Proposition 5 is valid only
for regular geometric shapes. Therefore, although we may use this propo-
sition to show the optimality at the algorithm termination (where Voronoi
cells become regular), moving towards the centroids may not be a gradient
direction (though it is likely to be close to the gradient) before termination.
As a result, we need to test whether a motion does increase the coverage
(objective function) before an actual move (line 5).

In a practical implementation, we use the Armijo rule to fine tune the
step size α [30]. Basically, if the objective does not increase with the current
step size α, we backtrack the step size by α+ = ηα for 0 < η < 1. If
the current sensor location is not a local maximum, there exists a point in
its neighborhood that gives a higher value of the objective. Therefore, the
Armijo rule always leads to a location change, unless the current location is
already a local maximum.Such a strategy of tuning step size in each iteration
not only guarantees the optimality of our algorithms, but also prevents sensor
nodes from zigzag moving and hence serves the purpose of energy efficiency.
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5.4. Rotation Control Based on PCA

Although the optimality condition given by Proposition 6 is sufficiently
general, it is too costly to solve the integral equation (5). Therefore, we
actually approximate θ∗i by the results given in Proposition 7. The com-
putation of the main axis (6) is essentially a continuous version of Principal
Component Analysis (PCA) [31]. Therefore, we use PCA to numerically
compute the main axis of an arbitrarily shaped Voronoi cell. Similar to the
motion control, the rotation direction also may not be the gradient before
termination. Therefore, we also need to test the variance in coverage before
rotating (line 6). The Armijo rule, similar to the motion control, is again
used to adapt the step size. Note that, each sensor node only computes and
broadcasts the orientation value to its one-hop neighbors in every iteration,
instead of mechanically rotating. Node ni adjusts its orientation to θ∗i and
performs sensing task after our algorithm achieves convergence at the end.

5.5. Performance and Complexity Analysis

We hereby sketch the important aspects of the algorithm performance.
The convergence of CRMC is guaranteed by the ascending feature of the iter-
ation and boundedness of the coverage function C. As CRMC is a distributed
version of a gradient-based approach, it converges linearly (or geometrically)
[30], in another word, lim supk→∞ |Ck+1−C∗|/|Ck−C∗| < 1. The (local) opti-
mality at the algorithm termination is achieved if the Voronoi cells satisfy the
symmetry property stated in Sec. 4. As we will show in Sec. 7, the symmetry
property is almost satisfied. Within each iteration, the computational com-
plexity is mostly incurred by computing the centroids and main axes through
numerical integrations. Both the complexity and accuracy grow linearly in
the number of finite elements used to approximate a space.

6. Staged Rotation and Motion Control

Although manipulating Voronoi cells with curved boundaries requires
only basic arithmetic operations, we further simplify the computation and
propose SRMC as a more efficient alternative. The basic idea is to leverage
on the convex polytope cells by unifying sensor orientations. As unifying
orientations can be achieved by a simple diffusion process, and Voronoi cells
with linear boundaries are easier to handle, we conclude that the algorithm
incurs less computational load than CRMC.
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6.1. Unifying Orientations

Given sensors with arbitrary orientations, what we need is a consensus
protocol to reconcile the difference. Based on the results reported in [32],
we devise a gossip-based protocol entailing only localized message exchanges
(Algorithm 2); it reaches a consensus on the average value of all the initial
orientations. Let Θ = [θ1, · · · , θN ]T and W = [wij], we know that the

Algorithm 2: Gossip-based orientation unification

Input: For each ni ∈ N , initial orientation θ0i , stopping tolerance ε
Output: Uniform orientation θ̄ =

∑
i θ

0
i /N

1 For every node ni ∈ N periodically (every τ ms):
2 Broadcast (θi) to all nj ∈ N (ni)
3 upon Receive ({θi}) from all nj ∈ N (ni) do:
4 if |wiiθi +

∑
nj∈N (ni)

wijθj − θi| > ε then

5 θ+i ← wiiθi +
∑

nj∈N (ni)
wijθj

6 end

gossip-based unification process Θ+ = WΘ converges iff 1 (i.e., the all-one
vector) is the eigenvector (both left and right) of W corresponding to the
spectral radius 1 [32]. As our algorithm needs to be localized, we take wij =
max−1{|N (ni)|, |N (nj)|} and determine wii according to W1 = 1. Similar
with CRMC, the rotation is performed mechanically only when the algorithm
terminates.

6.2. Voronoi Partition and Motion Control

The partition and control procedure here are similar to those described
in Sec. 5.2 and 5.3. However, due to the unified orientations, computations
incurred by the control process are greatly simplified. For example, the bi-
sectors are all lines: each passes the midpoint of two neighboring nodes and
is perpendicular to f ′(·) at that point. Also, as all cells are convex polytopes,
they are connected, hence the main component is equal to the cell. Addi-
tionally, it is much easier to calculate the centroids of the convex polytopes.
The control law only deals with motion: it again moves a sensor towards
the centroid of its cell, while adapting the step size to keep increasing the
coverage objective. Although the control law does not act on the orientations
anymore, the motion control and Voronoi partition are actually adapting the
shapes of the cells (hence their main axes) towards the unified orientation.
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6.3. Performance and Complexity Analysis

The linear convergence of SRMC is guaranteed by the same reason as that
of CRMC. Although we cannot claim optimality for SRMC at the algorithm
termination (as it sacrifices one degree of freedom in optimizing the cover-
age), its performance may not be worse than CRMC: remember CRMC only
reaches local maximums. As we will demonstrate in Sec. 7, the Voronoi cells
tend to adapt their main axes to the unified sensing orientation. Therefore, it
is highly possible that SRMC also leads to some local maximum. Thanks to
the convex polytope cells induced by a uniform orientation, the computation
load for each iteration is almost negligible.

7. Evaluation

In this section, we perform extensive experiments to verify the efficacy
of our algorithms in TOSSIM [33]. We first briefly introduce the simula-
tion settings. We then study the convergence of our algorithms. Moreover,
we evaluate our algorithms in terms of coverage and energy consumption,
and finally illustrate the adaptivity of our algorithms to arbitrarily shaped
targeted regions with diverse density.

7.1. Simulation Settings

As our algorithms can be applied to any non-increasing SDF, we adopt
a Gaussian-like function f(x) = exp(−cx/2) as the SDF for all simulations,
where c represents the attenuation of the sensitivity. We first set the EDF
ψ(v) = 1 in Sec. 7.2 and 7.3, then we use other EDFs in Sec. 7.4 to verify
the adaptability of our algorithms. The two metrics that we adopt to eval-
uate the algorithm performances are (i) coverage, which is the value of the
objective function C({Ai}, {ui}, {θi}) and (ii) energy consumption, which is
in proportion to moving distance. Recall that the sensor nodes adjust their
orientations after the algorithm terminates; we thus omit the cost induced by
rotation as it only leads to O(1) energy consumption and is much less than
the energy cost in moving. For N nodes to cover an area of size |A|, consid-
ering our algorithms usually lead to regular deployments, we empirically set
a limited transmission range r = 2.5

√
|A|/(πN), such that each sensor node

has approximately 6 to 7 one-hop neighbors to ensure the network connectiv-
ity. In another word, this assumption can be in turn used to determine the
number of nodes with a certain communication range as a result of our algo-
rithms. We also set the sensing directionality matrix Pi (see Equation (1))
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such that the induced ellipse Ei (centered at ui and taking 1/a and 1/b as
the major and minor radii, respectively) has an area of |A|/N . In order to
give sufficient time to conduct a movement, we set the communication round
τ as 10 second.

Although we are the first to deal with directional sensors, existing al-
gorithms for omnidirectional sensor, enhanced by our orientation handling
mechanism, may also be applicable. In the following, we will compare our
algorithms with SRMC-Minimax: a variance of our SRMC for which the mo-
tion direction is determined by the minimax point (or Chebyshev center, see
Sec. 2.1 and [4] for details) of a Voronoi cell. Though the original Minimax
algorithm [4] is arguably the best control law for omnidirectional sensors, it
is not directly applicable to directional sensors, because it cannot handle the
rotation control (obviously) and does not converge even if the orientations
are unified.

7.2. Convergence

As convergence results that we have obtained are all similar to each other,
we hereby use only one such case for demonstration purpose. We consider an
area of 1×1 km2, and 100 nodes are initially deployed close to the bottom-left
corner of the area, as shown by Fig. 5(a). Then we show the outcomes of the
three algorithms (assuming c = 1) in the remaining sub-figures of Fig. 5. It is
obvious that both CRMC and SRMC lead to evenly distributed and mostly
symmetric Voronoi cells, confirming the optimality results we stated earlier.
On the contrary, SRMC-Minimax results in rather uneven and asymmetric
cells, since the Chebyshev centers used in the context of omnidirectional
sensing model [4] do not have optimality for our CMMSDP.

We also show the converging processes (coverage vs. communication
rounds) of the three algorithms in Fig. 6, assuming three different values
of c. First, we use the black dotted line to represent the naive upper bound
of global optimal coverage for c = 1,2 and we can observe that both CRMC
and SRMC go very close to the bound, which confirms the optimality of
our algorithms. Second, both SRMC and SRMC-Minimax converge faster
than CRMC during the first 40 rounds. This is due to the simplification

2The bound is computed by considering every node covers the same area |A|/N and
by maximizing individual cell coverage over all possible geometric shapes (which leads to

ellipse), i.e.,
∑N

i=1

∫
Ei e
−‖v−ui‖2Pi

/2dv.
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(a) Initial deployment (b) Outcome of CRMC

(c) Outcome of SRMC (d) Outcome of SRMC-Minimax

Figure 5: Initial deployment and the outcomes of different algorithms.

introduced by unifying the orientation before the motion control. In the
long run, SRMC-Minimax performs worse than the other two, while CRMC
is marginally better than SRMC. There is no surprise as the centroidal di-
rection used by both CRMC and SRMC stems from an optimality condition
(and CRMC further control rotations based on another optimality condition),
whereas SRMC-Minimax is purely heuristic. The superiority of CRMC and
SRMC is more conspicuous with larger c, because the impact of deployment
strategy on coverage becomes more significant for sensors with more limited
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sensitivity.
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Figure 6: Convergence of the three algorithms.

It can be observed that both CRMC and SRMC converge in about 120
rounds. Considering CC2420 radio has transmit power 52.5 mW and re-
ceiving power 56.4 mW [34] and each transmitting/receiving operation takes
around 20 ms, each sensor node spends only about 0.3 Joule on communica-
tion by running our algorithms. Moreover, although SRMC-Minimax reaches
convergence in around 70 rounds (faster than CRMC and SRMC), the rounds
need to interpreted differently from those in [4]. As the Minimax algorithm
used in [4] (to deal with omnidirectional sensors) directly moves nodes to the
minimax points of their current cells, while our algorithms adopt Armijo rule
to tune the step size, the convergence of the Minimax algorithm is faster in
terms of rounds. However, such a full step size leads to oscillation in mo-
bility control for directional sensors, so we adopt a fractional step size that
adapts to the geometry of current cells through backtracking (see Sec. 5.3).
Consequently, more rounds in our case is not meant to much higher energy
consumption (which we will illustrate in Sec. 7.3).

7.3. Coverage and Energy Consumption

In this section, we fix the area as 1×1 km2 and the SDF as f(x) =
exp(−x/2), but we vary the network size from 20 to 180. We show the cov-
erage of the three algorithms in Fig. 7. As we scale the sensing directionality
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Figure 7: Coverage of the three algorithms.

matrix Pi according to |A|/N , increasing network size should slightly increase
the optimal coverage (analogous to the ellipse packing with a decreasing size
of each ellipse). This is clearly shown by both CRMC and SRMC in Fig. 7.
Moreover, the abnormal decrease in coverage for SRMC-Minimax again con-
firms the non-optimality of this heuristic. Finally, as CRMC and SRMC
may both converge to local maximums, one cannot be constantly superior to
another.

We also evaluate the overall energy consumption by demonstrating the
total moving distance until the algorithm terminations for these three algo-
rithms. The results are shown in Fig. 8. It is obvious that, whereas CRMC
and SRMC-Minimax have comparable total moving distance, SRMC moves
longer than the other two algorithms. Recall that CRMC has to deal with
curved Voronoi cells, the outperformance in moving distance can compensate
the expense in computations to some extent. Furthermore, considering the
significant advantage of SRMC over SRMC-Minimax in coverage, there is no
surprising as a cost has to be paid to earn the optimality.

Additionally, we evaluate the maximum energy consumption on mov-
ing the sensor nodes in Table 1, which is driven by realistic power con-
sumption data. We hereby assume that a mobile sensor node is equipped
with a Micromo coreless DC motors (http://www.micromo.com/products/
dc-motors/coreless-dc-motors-data-sheets). The power consumption
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Figure 8: Total overhead in deploying mobile nodes.

Table 1: Maximum energy consumption (Joule)

# of nodes 20 60 100 140 180
CRMC 354.6 341.1 328.1 399.7 485.3
SRMC 267.9 616.5 543.1 752.5 982.7
SRMC-Minimax 207.3 464.5 445.1 746.4 491.2

of this motor is 120 mW and it may move a MicaZ Mote in a speed of 0.2
m/s. Considering a 2450 mAh Energizer (www.energizer.com) AA battery
contains 33 kJ, the maximum individual node consumption only accounts for
a small fraction of the node’s power storage, as shown in Table 1.

7.4. Adapting to Obstacles and Variable Density

In this section, we verify the performance of the three algorithms in adapt-
ing to a density function ψ, as well as to obstacles in a network region. Among
many experiments we have performed, we choose to exhibit two scenarios by
Fig. 9 and Fig. 10, respectively. We hereby use a color spectrum on the net-
work region to represent ψ ∈ [0, 1], with blue and red representing the lowest
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(a) Initial deployment (b) Outcome of CRMC

(c) Outcome of SRMC (d) Outcome of SRMC-Minimax

Figure 9: Adaptability to obstacles and variable densities I.

and highest importance, respectively. The “holes” within a network region
are obstacles that nodes cannot move upon. In order to make the numbers
comparable to each other, we normalize the two targeted regions to 1 km2

areas respectively. The figures clearly show that our CRMC and SRMC both
adapt well to variable densities and obstacles: they achieve almost the same
coverage and more sensor nodes are located in the area with high density
value. However, the performance of SRMC-Minimax is far from satisfactory.

Moreover, we use the values of coverage functions to evaluate the three
deployment strategies in Table 2. Table 2 confirms the visual results from
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(e) Initial deployment (f) Outcome of CRMC

(g) Outcome of SRMC (h) Outcome of SRMC-Minimax

Figure 10: Adaptability to obstacles and variable densities II.

Fig. 9 and Fig. 10. Similar to the results in Fig. 7, there is no significant
gap between CRMC and SRMC in terms of coverage quality, as they both
converge to local minima. Meanwhile, it is obvious that CRMC and SRMC
result in much better coverage than SRMC-Minimax.

Our results confirm the statement made in [7] about the inability of pre-
vious Voronoi-based approaches (e.g., [4]) to obstacles in the sensing field.
It is also demonstrated that a good coverage can be achieved with move-
ments guided by only local information, instead of using a global geometrical
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Table 2: Coverage functions for two targeted areas with obstacles and variable densities.

CRMC SRMC SRMC-Minimax
Deployment I 9.58e-2 9.42e-2 6.05e-2
Deployment II 9.88e-2 1.04e-1 7.03e-2

structure to guide the deployment (as did in [7]).

8. Conclusion

In this paper, we address a challenging problem on maximizing the sens-
ing coverage using mobile sensor. The contribution we make in this paper is
first-of-its-kind in modelling the sensing capability as a directional distribu-
tion function which leads to proposing two optimal and practically realisable
autonomous deployment strategies, CRMC and SRMC to solve the optimiza-
tion problem in a localized fashion. Our theoretical analysis and experiment
results have shown that, both CRMC and SRMC achieve (local) optimal cov-
erage and adapt well to obstacles and variable densities in the region under
surveillance with affordable energy and time cost.

It may be noted that, in this paper, connectivity is guaranteed by a
proper density for the initial deployment, such that our algorithms lead to
connected WSN deployments. One immediate extension to this paper would
be on investigating the joint coverage and connectivity problem under low
density.
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