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Abstract—Crowdsensing is an emerging paradigm of ubiquitous sensing, through which a crowd of workers are recruited to perform
sensing tasks collaboratively. Although it has stimulated many applications, an open fundamental problem is how to select among a
massive number of workers to perform a given sensing task under a limited budget. Nevertheless, due to the proliferation of smart
devices equipped with various sensors, it is very difficult to profile the workers in terms of sensing ability. Although the uncertainties of
the workers can be addressed by standard Combinatorial Multi-Armed Bandit (CMAB) framework through a trade-off between
exploration and exploitation, we do not have sufficient allowance to directly explore and exploit the workers under the limited budget.
Furthermore, since the sensor devices usually have quite limited resources, the workers may have bounded capabilities to perform the
sensing task for only few times, which further restricts our opportunities to learn the uncertainty. To address the above issues, we
propose a Context-Aware Worker Selection (CAWS) algorithm in this paper. By leveraging the correlation between the context
information of the workers and their sensing abilities, CAWS aims at maximizing the expected total sensing revenue efficiently with both
budget constraint and capacity constraints respected, even when the number of the uncertain workers are massive. The efficacy of
CAWS can be verified by rigorous theoretical analysis and extensive experiments.

Index Terms—Multi-Armed Bandits, worker selection, crowdsensing
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1 INTRODUCTION

Due to the proliferation of hand-held smart devices (e.g.,
smart phones, smart glasses, smart watches, etc) which are
usually equipped with various sensors [1], the concept of
crowdsensing has become a new paradigm for ubiquitous
sensing [2]. Thousands or even millions of human crowds
(a.k.a., workers) may be engaged in a sensing task (e.g., traffic
information collection, ambient surveillance, urban business
characterization, etc) with their sensor devices, and their col-
lective contributions can be utilized to considerably improve
sensing quality across a wide spectrum of applications [3].

By utilizing the crowdsensing paradigm, although there
is no need to deploy specialized sensor devices to complete
sensing tasks, thereby considerably reducing the overhead
of data acquirement, the requester of a sensing task is still
constrained by budget such that the requester only affords
to recruit a limited number of workers. Therefore, how to
select a set of high-qualified workers is a very crucial issue
for the crowdsensing paradigm. There have been many
existing studies exploring the combinatorial nature of the
worker selection problem by assuming the workers’ sensing
abilities are known in advance [4, 5, 6, 7].

Unfortunately, due to the diversities of the sensor de-
vices and human behaviors, the workers may have different
sensing abilities to provide data with different qualities even

• F. Li, J. Zhao, D. Yu and X. Cheng are with School of Computer Science
and Technology, Shandong University, Qingdao, China.
E-mail: {fli, dxyu, xzcheng}@sdu.edu.cn, zhaojichao@mail.sdu.edu.cn

• W. Lv is with School of Computer Science and Engineering, Beihang
University, Beijing, China.
E-mail: lwf@nlsde.buaa.edu.cn

Manuscript received April 19, 2005; revised August 26, 2015.

for the same sensing task, while it is usually very difficult to
pre-profile the heterogeneous workers to characterize their
sensing abilities, especially considering the number of the
workers may be huge. To address the uncertainties of the
workers, one popular choice is to apply the Combinatorial
Multi-Armed Bandits (CMAB) framework (e.g.,in [8, 9, 10])
such that the workers are sequentially selected to perform
the sensing task under a budget. The essence of the CMAB
framework is to leverage a trade-off between exploitation
and exploration for each of workers [8, 10] (or each of
worker-task combinations [9]). Hence, when there are a
huge number of unknown workers, directly exploring and
exploiting the workers results in significant overhead, while
the total budget is limited. For one extreme example, if
we do not have sufficient budget to select each of the
workers once, the CMAB-based approaches even cannot
be initialized. In addition, the bounded sensing capacities
also restrict us from learning the sensing abilities of the
workers individually. Specifically, the workers perform the
task only limited times such that we do not have sufficient
opportunities to explore and exploit them. In a nut shell, in
this paper, we focus on addressing the following problem:
given a sensing task with limited budget and a massive number
of unknown workers with limited capacities, how to fully utilize
the budget and the capacities to explore and exploit the workers
for task assignment?

In this paper, we propose a Context-Aware Worker Selec-
tion (CAWS) algorithm. Specifically, by utilizing the correla-
tion between workers’ context information and their sensing
abilities, we innovate in leveraging a CMAB framework to
balance the exploitation and exploration in the context space
rather than the massive workers. By learning the sensing
ability distribution in the context space, we sequentially
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select the uncertain workers to efficiently maximize the
expected sensing revenue with both strict budget constraint
and capacity constraint respected. We conduct solid theoret-
ical analysis to quantify the performance gap (a.k.a. regret)
between our algorithm and the (nearly) optimal solution
with the workers’ sensing abilities known as prior. We
also perform extensive experiments to verify the efficacy of
CAWS. The main contribution of this paper is summarized
as follows

• To the best of our knowledge, this is the first work
considering the scalability of the uncertain worker
selection in large-scale crowdsensing systems.

• We propose a context-aware worker selection algo-
rithm to address the contradiction between the mas-
sive uncertain workers and the limit budget as well
as the workers’ bounded sensing capacities.

• We conduct rigorous theoretic analysis to quantify
the regret between our CAWS algorithm and the
approximately optimal one and perform extensive
experiments (with both synthetic data and real data)
to verify the advantages of CAWS over other state-
of-the-art methods.

The remaining of our paper is organized as follows. We
first introduce the system model and describe our problem
in Sec. 2. We then present the details of our CAWS algorithm
in Sec. 3. The analysis of our CAWS algorithm is given in
Sec. 4. We report our experiment results in Sec. 5. We finally
survey related literature and conclude this paper in Sec. 6
and Sec. 7, respectively.

2 SYSTEM MODEL AND PROBLEM DESCRIPTION

2.1 System Model
We consider a crowdsensing process assigning a sensing
task to a set of workers N = {1, 2, · · · , N} under budget
B. For each worker i ∈ N , let ci denote the cost to recruit
(or select) worker i for one time to collect a data sample.
Note that the cost parameters for different workers may
be heterogeneous. We also define a capacity attribute τi for
each worker i ∈ N , which represents the maximum number
of data samples worker i can contribute (or the maximum
number of times worker i is selected). Let cmin = mini∈N ci,
cmax = maxi∈N ci and τmax = maxi∈N τi.

Each worker i ∈ N is associated with contextual in-
formation denoted by ϕi which is closely related to the
worker’s sensing ability. We assume that, for ∀i ∈ N , ϕi ∈ S
is an M -dimensional vector, where S = [0, 1]M is the
so-called “context space”. The context dimensions could be
the proficiency of the workers in some required skills, the
personal backgrounds of the workers or the performance
parameters of the sensor devices, and we normalize each of
the dimensions into a range of [0, 1]. We define a stochastic
reward function r : S → {0, 1}. For ∀i ∈ N , binary
random variable r(ϕi) ∈ {0, 1} indicates if a data sample
provided by worker i is qualified and thus represents the
random reward obtained by selecting worker i to provide a
qualified data sample. We assume r(ϕi) for each selection
(and thus for each data sample) is identically and indepen-
dently drawn from an unknown Bernoulli distribution and
let µi = E[r(ϕi)] denote the unknown expected value of

r(ϕi)
1. In fact, µi is a measure of worker i’s sensing ability.

To facilitate our presentation, we suppose ri = r(ϕi) and
thus µi = E[ri] in the following.

2.2 Problem Description

Assuming xi ∈ {0, 1, · · · , τi} is the number of times we
select worker i (i.e., the number of data samples we recruit
worker i to provide), our problem can be formulated as

max f({xi}Ni=1) =
N∑
i=1

µixi (1)

s.t.
N∑
i=1

xici ≤ B, (2)

xi ∈ {0, 1, 2, · · · , τi} , ∀i ∈ N (3)

Our objective (1) is to maximize the expected cumulative
revenue of our task assignment {xi}Ni=1, subject to budget
constraint (2) and capacity constraints (3). In particular, the
total cost of our task assignment cannot exceed the budget
and each worker cannot be selected for more than τi times.
It is apparent that, if µi (or r(·)) was known as prior
knowledge, our problem could be cast to a Bounded Knapsack
Problem (BKP). Although the BKP is of NP-hardness, it can
be addressed by many approximate algorithms efficiently
[11]. For example, in the 2-approximation density-order
greedy algorithm, we first sort the workers in decreasing
order with respect to their densities ρi = µi/ci, and then
greedily select the workers in the order until we do not have
sufficient residual budget to select any available worker
with non-zero residual capacity. In fact, as will shown in
Sec. 3, we adapt this algorithm as a subroutine in our
CAWS algorithm, where we sort the workers according to
the estimates of their densities.

Unfortunately, it is usually very difficult to pre-profile
the workers due to the huge number of workers as well
as the diversity of sensor devices carried by the workers.
Consequently, {µi}Ni=1 may not always be available as a
prior, which makes our problem is much more difficult
than the BKP. To address such uncertainties, one choice
is to apply the CMAB framework. For example, in [12],
the workers (corresponding to the arms) are explored and
exploited through UCB indexing. Nevertheless, when there
are a huge number of workers (and thus arms), leveraging
the trade-off between exploration and exploitation directly
among the workers results in considerable overhead. For
example, in an extreme case where

∑N
i=1 ci > B, we even do

not have sufficient budget to select each of the workers for
one time to initialize the workers’ UCB indices. Furthermore,
due to the workers’ bounded capacities, we may do not have
sufficient opportunities to explore and exploit the workers
individually. Therefore, the problem is, with unknown sensing
abilities, how to efficiently select among the massive workers
to maximize the expected total sensing revenue under limited
budget and bounded capacities? In this paper, we propose
to utilize the correlation between context information and

1. Although we hereby assume r(ϕi) is an i.i.d. random variable
obeying an unknown Bernoulli distribution parameterized by µi =
P(r(ϕi) = 1), our algorithm is readily to work with arbitrary probabil-
ity distributions with normalized supports in [0, 1].
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sensing ability, for the purpose of balancing exploration and
exploitation among the workers in the context space.

3 ALGORITHM

Our CAWS algorithm is motivated by a common sense
that workers with similar context may have similar sensing
abilities for a certain type of sensing tasks (which is the
main basis for our later theoretic analysis). We divide the
context space S into dM disjoint cubic sub-space (which
are called “hypercubes” in the following). Each of the M -
dimensional hypercubes is of identical size 1

d ×
1
d ×· · ·× 1

d
2.

We denote by Ω the set of all hypercubes and by Qi ∈ Ω the
one such that ϕi ∈ Qi. As mentioned above, the workers
in the same hypercube may have similar sensing abilities.
Therefore, the essence of our CAWS algorithm is to leverage
the trade-off between exploration and exploitation among
the hypercubes rather than the workers. By learning the
“sensing abilities” of the hypercubes, we can estimate the
ones of the workers.

The pseudo-code of our CAWS algorithm is described
in Algorithm 1. Our algorithm proceeds in iterations. We
denote by i(t) ∈ N the worker selected in the t-th iteration
and by ri(t) the reward yielded by this selection. For ∀Q ∈ Ω,
it is said that we choose Q in the t-th iteration if ϕi(t) ∈ Q.
We then denote by

λQ(t) =
t∑

t′=1

I(ϕi(t′) ∈ Q) = λQ(t− 1) + I(ϕi(t) ∈ Q) (4)

the number of times Q is chosen up to the t-th iteration,
where I : {True,False} → {1, 0} is an indicator function.
We also denote by

r̄Q(t) =

∑t
t′=1 I(ϕi(t′) ∈ Q)ri(t′)

λQ(t)

=
r̄Q(t− 1)λQ(t− 1) + I(ϕi(t) ∈ Q)ri(t)

λQ(t)
(5)

the average reward obtained up to the t-th iteration by
choosing Q. At the beginning of the t-th iteration, we also
let B(t) be the residual budget and τi(t) be the residual
capacity of worker i ∈ N , which are initialized by B(1) = B
and by τi(1) = τi, respectively, as shown in Line 1. Worker
i ∈ N is said to be available in the t-th iteration if τi(t) ≥ 1.
Our algorithm proceeds only if there exists sufficient budget
to select at least one available worker (see Line 2). In the
first dM iterations, we randomly choose a worker from each
of the hypercubes, so as to initialize λQ(t) and r̄Q(t) for
∀Q (see Lines 3 and 4). In the following, we use a density-
ordered greedy subroutine (see Algorithm 2) to calculate
a non-negative integral weight xi(t) for ∀i ∈ N , which
represents how many times we can (virtually) select worker
i using residual budget B(t) in a greedy manner (see Line 6).
We then choose worker i(t) with probability xi(t)∑N

i′=1
xi′ (t)

(see
Line 7) and increase xi(t) by one accordingly (see Line 8).
Next, we update r̄Qi(t)

(t) and λQi(t)
(t) for the hypercube

Qi(t) (see Line 11). We finally renew the residual capacity of
i(t) and the residual budget (as shown in Lines 12 and 13,

2. We will introduce how to partition the context space by choosing
a proper value for d later in Sec. 4.

respectively) and proceed to the next iteration (see Line 14).

Algorithm 1: Our context-aware worker selection
algorithm.

Input: {τi, ci, ϕi}Ni=1, B
Output: x = {xi}Ni=N

1 t = 1; B(t) = B; τi(t) = τi and xi = 0 for ∀i ∈ N ;
2 while B(t) ≥ min{ci | i ∈ N , τi(t) ≥ 1} do
3 if t ≤ dM then
4 Randomly choose worker i(t) in the t-th

hypercube;
5 else
6 Call the density ordered greedy subroutine

(see Algorithm 2) to calculate {xi(t)}Ni=1;
7 Choose worker i(t) ∈ N with probability

xi(t)∑
i′∈N xi′ (t)

;
8 xi(t) = xi(t) + 1;
9 end

10 Observe ri(t);
11 Update λQi(t)

(t) and r̄Qi(t)
(t) according to (4)

and (5), respectively;
12 τi(t)(t+ 1) = τi(t)(t)− 1;
13 B(t+ 1) = B(t)− ci(t);
14 t = t+ 1;
15 end

As demonstrated in Algorithm 1, a density-ordered
greedy subroutine is called in each iteration to calculate
xi(t). The pseudo-code of the subroutine is given in Algo-
rithm 2. Specifically, in the t-th iteration, we first calculate
UCB index

Ui(t) = r̄Qi
(t− 1) +

√
2 log t

λQi(t− 1)
(6)

for each worker i (see Line 1), and the workers are then
sorted in decreasing order with respect to ρi(t) = Ui(t)/ci.
The UCB index Ui(t) actually can be thought as an estimate
on worker i’s sensing ability. We greedily choose the work-
ers with budget B(t) in the order until there is no available
workers or the residual budget is not sufficient for us to
select any available workers (see Lines 3∼11).

4 ANALYSIS

As mentioned in Sec. 2.2, the BKP (1)∼(3) is NP-hard when
{µi}Ni=1 are known as a prior. We now introduce a rounding-
based approximation algorithm which can serve as a base-
line to theoretically evaluate our CAWS algorithm. We first
fractionalize the (integral) BKP as follows

max f({xi}Ni=1) =
N∑
i=1

µixi (7)

s.t.
N∑
i=1

xici ≤ B, 0 ≤ xi ≤ τi, ∀i ∈ N (8)

and then round the fractional solution to an integral one.
Compare with the (integral) BKP (1)∼(3), the only difference
between them is that the variable xi is a fractional non-
negative number in the Fractional BKP (FBKP) rather than
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Algorithm 2: Density-ordered greedy subroutine in
the t-th iteration.

Input: {τi(t), ci}Ni=1, B(t), {r̄Q(t− 1), λQ(t− 1)}Q∈Ω

Output: x(t) = {xi(t)}i∈N
1 Calculate Ui(t) for ∀i ∈ N according to (6);
2 Sort the workers N in decreasing order with respect

to ρi(t) = Ui(t)/ci;
3 b = 0;
4 for i = 1, 2, · · · , N do
5 if b+ ci ≤ B(t) then
6 xi(t) = min

{
τi(t),

⌊
B(t)−b

ci

⌋}
;

7 b = b+ ci · xi(t);
8 else
9 xi(t) = 0;

10 end
11 end

an integral non-negative number in the BKP. The FBKP prob-
lem can be addressed by a density-ordered greedy approach.
We first sort the workers in decreasing order with respect to
their densities ρi = µi/ci such that ρ1 ≥ ρ2 ≥ · · · ≥ ρN .
Then, the optimal solution to the FBKP can be calculated as

x∗
i =


τi, ∀i = 1, 2, · · · , k − 1
B−

∑k−1
j=1 cjτj
ci

, i = k

0, ∀i = k + 1, k + 2, · · · , N
(9)

where the k-th worker is continuously “split” such that∑k−1
j=1 cjτj ≤ B and

∑k
j=1 cjτj > B. We finally round

downward x∗
i for ∀i ∈ N , and denote by ⌊x∗⌋ = {⌊x∗

i ⌋}Ni=1

the resulting integral solution to the BKP. Letting f∗
BKP and

f∗
FBKP be the optimal objective value of the BKP and the

one of the FBKP, respectively, we have

N∑
i=1

µi⌊x∗
i ⌋ ≤ f∗

BKP ≤ f∗
FBKP ≤

N∑
i=1

µi⌊x∗
i ⌋+ µk (10)

It is shown that the gap between the lower bound of f∗
BKP

and its upper bound is constrained; hence, it is rational to
use the lower bound

∑N
i=1 µi⌊x∗

i ⌋ as the baseline to evaluate
the performance of our algorithm. Specifically, given time
horizon T , we are interested in investigating the following
regret function

Regret(T, {i(t)}Tt=1) =
N∑
j=1

µj⌊x∗
j⌋ −

N∑
j=1

µjET,{i(t)}T
t=1

[xi]

(11)

which indicates the gap between the expected cumulative
reward yielded by the (nearly) optimal solution ⌊x∗⌋ and
the expected one produced by the solution of our algorithm
x. In the following, we will show the upper-bound of the
above regret function.

As mentioned in Sec. 3, our CAWS algorithm is based on
the natural assumption that the workers with similar context
could have similar sensing abilities. This assumption can be
formalized by the following Hölder condition.

Assumption 1 (Hölder Condition). There exist L > 0 and
α > 0 such that for any contexts s, s′ ∈ S , it holds that

|E[r(s)]− E[[r(s′)]| ≤ L∥s− s′∥α (12)

where ∥ · ∥ denotes the Euclidean norm in RM .

It should be noted that our CAWS algorithm still works if
the assumption does not strictly hold. However, the regret
might not be bounded if the assumption was violated.

Lemma 1. For ∀i, i′ ∈ N such that Qi = Qi′ , we have

|µi − µi′ | ≤ ∆ = L
(
M

1
2 d−1

)α
(13)

Proof. Since the workers i and i′ have their contexts in the
same hypercube, we have ∥ϕi − ϕi′∥ ≤ M

1
2 d−1 according

to our strategy of evenly partitioning the context space (as
depicted in Sec. 3). Then, considering the Hölder condition
shown above, we have |µi − µi′ | = |E[r(ϕi)] − E[r(ϕi′)]| ≤
L∥ϕi − ϕi′∥α = L

(
M

1
2 d−1

)α
For each hypercube Q ∈ Ω, we denote by µQ the expected
reward yielded by selecting the workers in Q (i.e., the
“sensing ability” of the hypercube Q). It is apparent that
|µi − µQi | ≤ ∆ for ∀i ∈ N , which implies µQi can be used
as an estimate on µi.

The definition of the regret function suggests the key of
our analysis should be to quantify the impact of mischoos-
ing workers on the sensing revenue. The reason for the
regret is two-fold: on one hand, we leverage the qualities
of the contextual hypercubes to estimate the ones of the
workers such that we may not be able to make “right”
selection decisions even we learn µQ exactly; on the other
hand, according to MAB theory, we learn the qualities of
the contextual hypercubes through a trade-off between ex-
ploration and exploitation, while making “wrong” selection
decisions is the price we have to pay for the learning process.
Therefore, supposing ⌊x̃∗⌋ = {⌊x̃∗

i ⌋}Ni=1 is the solution
obtained by applying the rounding-based density-ordered
greedy algorithm to BKP instance ({i, µQi

, ci, τi}Ni=1, B)
(where we use µQi

as an estimate on µi), we decompose
the regret function as follows

Regret(T, {i(t)}Tt=1)

=
N∑
j=1

µj⌊x∗
j⌋ −

N∑
j=1

µj⌊x̃∗
j⌋

+
N∑
j=1

µj⌊x̃∗
j⌋ −

N∑
j=1

µjET,{i(t)}T
t=1

[xj ]

≤
N∑
j=1

µj⌊x∗
j⌋ −

N∑
j=1

µj⌊x̃∗
j⌋+

N∑
j=1

(µQj
+∆)⌊x̃∗

j⌋

−
N∑
j=1

(µQj
−∆)ET,{i(t)}T

t=1
[xj ]

≤
N∑
j=1

µj⌊x∗
j⌋ −

N∑
j=1

µj⌊x̃∗
j⌋+

N∑
j=1

µQj
⌊x̃∗

j⌋

−
N∑
j=1

µQj
ET,{i(t)}T

t=1
[xj ] +

2B∆

cmin
(14)
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where we have the second inequality since |µi − µQi
| ≤

∆ holds for ∀i ∈ N as mentioned above and the
third one due to the fact that

∑N
j=1⌊x̃∗

j⌋ ≤ B
cmin

and∑N
j=1 ET,{i(t)}T

t=1
[xj ] ≤ B

cmin
. By defining

Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1) =
N∑
j=1

µj⌊x∗
j⌋−

N∑
j=1

µj⌊x̃∗
j⌋ (15)

and

Regret(⌊x̃∗⌋,x, {µQi}Ni=1)

=
N∑
j=1

µQj⌊x̃∗
i ⌋ −

N∑
j=1

µQjET,{i(t)}T
t=1

[xj ] (16)

the regret function Regret(T, {i(t)}Tt=1) can be re-written as

Regret(T, {i(t)}Tt=1) ≤ Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1)

+ Regret(⌊x̃∗⌋,x, {µQi}Ni=1) +
2B∆

cmin
(17)

Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1) represents the loss due
to our partition of the contextual space, while
Regret(⌊x̃∗⌋,x, {µQi

}Ni=1) indicates the one resulting
from our learning process. In the following, we first present
the main result showing the upper-bound of the regret
function (17) in Sec. 4.1 and then report the details of the
proof in Sec. 4.2, by bounding the two sub-regret functions
(15) and (16), respectively.

To facilitate our analysis, we reuse the notion ∈ when
there is no ambiguity, such that for each worker i, it is said
that i ∈ ⌊x∗⌋ (resp. i ∈ ⌊x̃∗⌋) if ⌊x∗

i ⌋ ≥ 1 (resp. ⌊x̃∗
i ⌋ ≥ 1).

We also give some notions as follows which will be useful
to our later analysis.

i∗ = argmax
i∈N

µQi

ci
(18)

NQ = {i ∈ N | ϕi ∈ Q} (19)
N+

Q = {i ∈ N | ϕi ∈ Q, i ∈ ⌊x̃∗⌋} (20)

N−
Q = {i ∈ N | ϕi ∈ Q, i /∈ ⌊x̃∗⌋} (21)

cmax(N+
Q ) = max

i∈N+
Q

ci, cmin(N+
Q ) = min

i∈N+
Q

ci (22)

cmax(N−
Q ) = max

i∈N+
Q

ci, cmin(N−
Q ) = min

i∈N+
Q

ci (23)

δmin = min
Q,Q′∈Ω

∣∣∣∣∣ µQ

cmin(N−
Q )

− µQ′

cmax(N+
Q )

∣∣∣∣∣ (24)

ξ =
8

c2minδ
2
min

+

(
cmax

cmin

)2

(25)

4.1 Main Result
Theorem 1. Assuming d =

⌈
B

1
α+M

⌉
, the regret function of our

CAWS algorithm (11) is upper-bounded by(
τmax + 2MB

M
α+M h(lnB) + 1

) cmax

cmin
+

4LM
α
2 B

M
α+M

cmin
+ 1

(26)
where

h(lnB) = ξ ln

(
B

cmin

)
+

π2

3
+ 1 (27)

which implies that the regret for our CAWS algorithm is
O
(
B

M
α+M lnB

)
.

4.2 Detailed Proof

We first prove Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1) is upper-
bounded in Theorem 2.

Theorem 2. Recall that ⌊x∗⌋ = {⌊x∗
i ⌋}Ni=1 and ⌊x̃∗⌋ =

{⌊x̃∗
i ⌋}Ni=1 be the results we obtain by applying the rounding-

based density-ordered greedy algorithm to the two BKP in-
stances Instance1 = ({i, µi, ci, τi}Ni=1, B) and Instance2 =
({i, µQi

, ci, τi}Ni=1, B), respectively. Considering µQi
is an es-

timate on µi for ∀i ∈ N , we have

Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1) ≤
2∆B

cmin
+ 1 (28)

Proof. We denote by x∗ = {x∗
i }Ni=1 and x̃∗ = {x̃∗

i }Ni=1 the
fractional solutions to the FBKP versions of Instance1 and
Instance2, respectively. Considering the inequality (10),

Regret(⌊x∗⌋, ⌊x̃∗⌋, {µi}Ni=1)

≤
N∑
i=1

µix
∗
i −

(
N∑
i=1

µix̃
∗
i − µQk̃

)
≤

N∑
i=1

µix
∗
i −

N∑
i=1

µix̃
∗
i + 1

(29)

where k̃ is the split worker in Instance2 and µk̃ ≤ 1. Accord-
ing to the procedure of our rounding-based density-ordered
greedy algorithm shown in Sec. 4, if there is a worker i
with x∗

i > x̃∗
i , there must be at least another worker i′ with

x∗
i′ < x̃∗

i′ such that µi′
ci′

≤ µi

ci
and

µQ
i′

ci′
≥ µQi

ci
. Therefore,

µi

ci
− µi′

ci′
≤ µQi

+∆

ci
−

µQi′ −∆

ci′

=
µQi

ci
−

µQi′

ci′
+∆

(
1

ci
+

1

ci′

)
≤ 2∆

cmin
(30)

where we have the first inequality due to |µi−µQi | ≤ ∆ for
∀i ∈ N (see Lemma 1) and the third one by considering the
facts that

µQ
i′

ci′
≥ µQi

ci
and ci ≥ cmin for ∀i ∈ N . In other

words, if worker i is not (fractionally) selected in Instance2,
our algorithm will select some other workers to replace
worker i in x̃∗. Nevertheless, since the workers (selected
to replace worker i) have smaller densities than i, these
replacements may result in the reward loss, which can be
indicated by the difference between the first two terms in
(29). Hence, assuming Ñi denote the set of those workers
and ĩ = argminj∈Ñi

µQj

cj
, we have

N∑
i=1

µix
∗
i −

N∑
i=1

µix̃
∗
i

≤
∑

i:x∗
i >x̃∗

i

(
(x∗

i − x̃∗
i )µi −

(x∗
i − x̃∗

i )ci
cĩ

· µĩ

)

=
∑

i:x∗
i >x̃∗

i

(
ci(x

∗
i − x̃∗

i )

(
µi

ci
− µĩ

cĩ

))
(31)

Considering µi

ci
− µĩ

cĩ
≤ 2∆

cmin
(see (30)), we have

N∑
i=1

µix
∗
i −

N∑
i=1

µix̃
∗
i ≤ 2∆

cmin

∑
i:x∗

i >x̃∗
i

ci(x
∗
i − x̃∗

i ) ≤
2∆B

cmin

by substituting which into (29), we complete the proof.
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In the following, we prove the upper-bound of the sub-
regret function Regret(⌊x̃∗⌋,x, {µQi

}Ni=1). We introduce an
redundant term ET [T ]µQi∗ such that

Regret
(
⌊x̃∗⌋,x, {µQi

}Ni=1

)
= ET

[
N∑
j=1

µQj
⌊x̃∗

i ⌋ − TµQi∗ + TµQi∗

−
∑
Q∈Ω

∑
i∈NQ

µQE{i(t)}T
t=1

[xi | T ]
]

=
N∑
j=1

µQj⌊x̃∗
i ⌋ − µQi∗ET [T ]

+ ET

TµQi∗ −
∑
Q∈Ω

∑
i∈NQ

µQE{i(t)}T
t=1

[xi | T ]

 (32)

Apparently, the key to bounding the above sub-regret func-
tion is to figure out the lower-bound of the second term and
the upper-bound of the third one (see Lemma 2).

Theorem 3. Letting ⌊x̃∗⌋ be the results we obtain by applying
the rounding-based density-ordered greedy algorithm to the BKP
instances ({i, µQi , ci, τi}Ni=1, B) and x∗ be the output of our
CAWS algorithm, we have

Regret
(
⌊x̃∗⌋,x, {µQi

}Ni=1

)
≤ cmax

cmin

(
τmax + dMh(lnB) + 1

)
(33)

Proof. We first introduce Lemma 2 which will be helpful in
our later derivation. Due to the space limit, the proofs of
Lemma 2 can be found in Appendix A.

Lemma 2. Supposing T denotes the total number of the iterations
our CAWS proceeds with budget B, we have the following two
inequalities holds

ET [T ]

≥ B − cmax

ci∗
− ET

 ∑
j∈⌊x̃∗⌋

cj − ci∗

ci∗
E{i(t)}T

t=1
[xj | T ]


−

∑
Q:cmax(N−

Q )>ci∗

cmax(N−
Q )− ci∗

ci∗
h(lnB) (34)

and

ET

TµQi∗ −
∑
Q∈Ω

∑
i∈NQ

µQE{i(t)}T
t=1

[xi | T ]


≤

∑
Q:µQi∗ >µQ

(µQi∗ − µQ)h(lnB)

− ET

 ∑
j∈⌊x̃∗⌋

(µQi∗ − µQj )E{i(t)}T
t=1

[xj | T ]

 (35)

By substituting the above two inequalities (34) and (35)
into (32), we have

Regret
(
⌊x̃∗⌋,x, {µQi

}Ni=1

)
=

∑
Q∈Ω

∑
j∈Ω

µQ⌊x̃∗
j⌋ − ET [T ]µQi∗

+ET

TµQi∗ −
∑
Q∈Ω

∑
i∈NQ

µQE{i(t)}T
t=1

[xi | T ]


≤

∑
Q∈Ω

∑
j∈Ω

µQ⌊x̃∗
j⌋ −

µQi∗ (B − cmax)

ci∗

+µQi∗ET

 ∑
j∈⌊x̃∗⌋

cj − ci∗

ci∗
E{i(t)}T

t=1
[xj | T ]


+µQi∗

∑
Q:cmax(N−

Q )>ci∗

cmax(N−
Q )− ci∗

ci∗
h(lnB)

+
∑

Q:µQi∗>µQ

(µQi∗ − µQ)h(lnB)

+ET

 ∑
j∈⌊x̃∗⌋

(µQi∗ − µQj
)E{i(t)}T

t=1
[xj | T ]


≤

∑
Q∈Ω

∑
j∈Ω

µQ⌊x̃∗
j⌋ −

BµQi∗

ci∗
+

cmaxµQi∗

ci∗

+
∑
Q∈Ω

g · h(lnB)

+ET

[ ∑
j∈⌊x̃∗⌋

(
µQi∗ cj
ci∗

− µQj

)
E{i(t)}T

t=1
[xj | T ]

]
(36)

where

g = I(cmax(N−
Q ) > ci∗) ·

µQi∗ (cmax(N−
Q )− ci∗)

ci∗
+I(µQi∗ − µQ > 0) · (µQi∗ − µQ) (37)

Since B ≥
∑

j∈⌊x̃∗⌋ cj⌊x̃∗
j⌋, we have

∑
Q∈Ω

∑
j∈Ω

µQ⌊x̃∗
j⌋ −

BµQi∗

ci∗

≤
∑

j∈⌊x̃∗⌋

µQj⌊x̃∗
j⌋ −

µQi∗

∑
j∈⌊x̃∗⌋ cj⌊x̃∗

j⌋
ci∗

=
∑

j∈⌊x̃∗⌋

(
µQj

− µQi∗ cj
ci∗

)
⌊x̃∗

j⌋ (38)

In addition, since 0 ≤ µQi∗ ≤ 1, cmax(N−
Q )− ci∗ ≤ cmax −

cmin and µQi∗ − µQ ≤ 1, we have

g ≤ cmax − cmin

cmin
+ 1 =

cmax

cmin
(39)

Substituting the above two inequalities (38) and (39) into
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(36), we have

Regret
(
⌊x̃∗⌋,x, {µQi

}Ni=1

)
≤

∑
j∈⌊x̃∗⌋

(
µQj

− µQi∗ cj
ci∗

)
⌊x̃∗

j⌋+
cmaxµQi∗

ci∗

+ dM
cmax

cmin

(
ξ lnT +

π2

3
+ 1

)
+ ET

[ ∑
j∈⌊x̃∗⌋

(
µQi∗ (cj − ci∗)

ci∗
+ (µQi∗ − µQj

)

)

E{i(t)}T
t=1

[xj | T ]
]

=
∑

j∈⌊x̃∗⌋

(
µQj

− µQi∗ cj
ci∗

)
⌊x̃∗

j⌋+
cmaxµQi∗

ci∗

+ dM
cmax

cmin

(
ξ ln

(
B

cmin

)
+

π2

3
+ 1

)

− ET

 ∑
j∈⌊x̃∗⌋

(
µQj

− µQi∗ cj
ci∗

)
E{i(t)}T

t=1
[xj | T ]


≤ ET

[ ∑
j∈⌊x̃∗⌋

µQi∗ cj
ci∗

(
E{i(t)}T

t=1
[xj | T ]− ⌊x̃∗

j⌋
)]

+ dM
cmax

cmin

(
ξ ln

(
B

cmin

)
+

π2

3
+ 1

)
+

cmaxµQi∗

ci∗
(40)

where we have the last inequality holds by considering
µQi∗
ci∗

≥ µQj

cj
for ∀j ∈ N .

The first term at the right side of the above inequality
can be written as

ET

 ∑
j∈⌊x̃∗⌋

µQi∗ cj
ci∗

(
E{i(t)}T

t=1
[xj | T ]− ⌊x̃∗

j⌋
)

=
∑

j∈⌊x̃∗⌋

µQi∗ cj
ci∗

(
ET [E{i(t)}T

t=1
[xj | T ]]− ⌊x̃∗

j⌋
)

=
∑

j∈⌊x̃∗⌋

µQi∗ cj
ci∗

(
ET [E{i(t)}T

t=1
[xj − ⌊x̃∗

j⌋ | T ]]
)

≤
∑

j∈⌊x̃∗⌋:xj>⌊x̃∗
j ⌋

µQi∗ cj
ci∗

(
ET [E{i(t)}T

t=1
[xj − ⌊x̃∗

j⌋ | T ]]
)
(41)

Suppose k̃ denotes the split worker in ⌊x̃∗⌋. For any
worker j such that j ∈ ⌊x̃∗⌋ and j ̸= k̃, we have ⌊x̃∗

j⌋ = τj ,
while ⌊x̃∗

k̃
⌋ ≤ τk̃. Therefore, for ∀j ∈ ⌊x̃∗⌋, xj − ⌊x̃∗

j⌋ ≤ 0,
and the split worker k̃ is the only possible one such that
xk̃ − ⌊x̃∗

k̃
⌋ ≥ 0 may hold. Also, since cj ≤ cmax for ∀j ∈ N ,

continuing the above equation (41), we have

ET

 ∑
j∈⌊x̃∗⌋

µQi∗ cj
ci∗

(
E{i(t)}T

t=1
[xj | T ]− ⌊x̃∗

j⌋
)

≤ τmaxµQi∗ cmax

ci∗
(42)

We complete the proof by substituting (42) into (40) as
follows

Regret
(
⌊x̃∗⌋,x, {µQi

}Ni=1

)
≤τmaxµQi∗ cmax

ci∗
+

cmaxµQi∗

ci∗
+ dM

cmax

cmin
h(lnB)

≤(τmax + 1)
cmax

cmin
+ dM

cmax

cmin
h(lnB) (43)

Now, we are ready to prove our main result shown in
Theorem 1. Combining Theorem 2 and Theorem 3 into (17),
we have

Regret(T, {i(t)}Tt=1)

≤
(
τmax + dMh(lnB) + 1

) cmax

cmin
+

4∆B

cmin
+ 1 (44)

Letting d =
⌈
B

1
α+M

⌉
, we have

dM =
⌈
B

1
α+M

⌉M
≤ 2MB

M
α+M (45)

and
∆ = L

(
M

1
2 d−1

)α
≤ LM

α
2 B− α

α+M (46)

when α > 0 as shown in the Assumption 1. We finally
complete the proof of our main result by substituting (45)
and (46) into (44).

5 EXPERIMENTS

In this section, we evaluate the performance of our CAWS
algorithm through extensive experiments. We first introduce
the reference algorithms in Sec. 5.1 and then compare them
with our CAWS algorithm using both synthetic dataset and
real dataset in Sec. 5.2 and Sec. 5.3, respectively.

5.1 Reference Algorithms
We mainly compare our CAWS algorithm with the following
ones which can be applied to our problem.

• Oracle: Oracle is aware of the sensing abilities of
the workers; therefore, it applies the density-ordered
greedy algorithm to output a nearly optimal solution.

• Bounded ϵ-first: The bounded ϵ-first algorithm is
with decoupled exploitation and exploration [13].
Under a ϵ-fraction of the budget, it explores the
workers uniformly to estimate their sensing abilities;
while with the remaining budget, it assigns the task
to the workers according to their estimated sensing
abilities according to the density-ordered greedy al-
gorithm.

• B-KUBE: B-KUBE is a CMAB-based algorithm to
handle BKP, where the workers with unknown ex-
pected sensing abilities and bounded sensing ca-
pacities are selected under a given budget [12]. It
can be considered to be a degeneration of CAWS
where the context space is sufficiently partitioned
such that each hypercube contains only one worker.
Our CAWS algorithm is then degraded to that we
estimate the workers’ sensing abilities directly by
their UCB indices which are calculated according to
their historical performances.
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• Random: The (purely) random algorithm selects an
available worker (whose residential capacity is non-
zero) uniformly in each iteration until the budget
is exhausted or none of the workers have non-zero
residual capacity.

5.2 Evaluation with Synthetic Data
We first quantitatively evaluate the above algorithms in
terms of expected cumulative revenue by synthetic data. We
conduct our simulations by assuming there are 105 workers
whose capacities and costs are distributed uniformly in
[20, 40] and [1, 1.5], respectively. We suppose the context
space S has M = 2 dimensions and each dimension is
normalized in [0, 1] as mentioned in Sec. 2.1. The workers
have their contexts uniformly distributed in the context
space S . We also randomly set the workers’ sensing abilities
such that the Hölder condition holds for α = 1 for the
purpose of quantitative analysis (e.g., one choice is to let
each worker has its sensing ability being the average of its
context values).

We vary the budget from 4 × 104 to 4 × 105 with a
step size 4 × 104 and report the results in Fig. 1. Note that
in this setting, the budget is only at most 4 times higher
(or even smaller) than the number of the workers. In a
nutshell, compared with N , B is quite limited. It is shown in
Fig. 1 (a) that our CAWS algorithm yields higher expected
cumulative revenue than the other ones, since CAWS fully
utilizes the context information of the workers such that
we can effectively estimate the workers’ sensing abilities
according to the context information even we do not have
sufficient budget to fully exploit them. Furthermore, the
performance of our algorithm is very close to the one of
the oracle algorithm, especially when the budget is limited.

We also plot the regrets of the different algorithms in
Fig. 1(b). Since the regret function of the oracle algorithm
is always almost zero, we do not show it in Fig. 1(b). Con-
sistent with what has been shown in Fig. 1(a), our CAWS
algorithm has a much lower regret than the other three
alternatives. When the budget is increased, our algorithm
proceeds more iterations such that the regret is increased
but at a very low rate, which is consistent with our main
theoretical result in Theorem 1.

We then fix the budget B = 1 × 105 and vary the
number of the workers N = 4, 6, 8, 10 × 104 to show the
scalabilities of the different algorithms. The results in terms
of expected cumulative revenue are presented in Fig. 2.
In a given context space, when there are more workers
to “fulfill” the context space, our CAWS algorithm has a
better utilization of the context information to estimate the
worker’s sensing abilities more accurately. Therefore, with
an increasing number of workers, our CAWS algorithm
yields more expected cumulative revenue. In contrast, the
performances of the other algorithms are degraded in face
of a large number of workers, as they have no sufficient
budget to explore and exploit the workers.

5.3 Evaluation with Real Data
In this section, we evaluate the performance of our CAWS al-
gorithm in a crowdsensing application based on the dataset
published by Yelp [14]. In fact, crowdsensing is a general
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(a) Expected cumulative revenue
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Fig. 1. Comparisons of different algorithms under varying budget set-
tings with synthetic data.
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Fig. 2. Comparisons of different algorithms with different numbers of
workers.

paradigm for ubiquitous sensing, and the dataset includes
abundant real-world traces for emulating spatial crowdsens-
ing where Yelp workers are employed to review (or “sense”)
local business.

We randomly choose 105 workers from the dataset. For
each worker, we set the number of his/her reviews as
his/her capacities. Since there is no cost parameters for the
workers in the dataset, we randomly set the cost param-
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eters [1, 1.5]. We choose number of friends, number of fans
and number of year as elite as the context dimensions. In
our experiments, we gradually increase the dimensionality
of the contextual space, to evaluate our algorithm under
the differently dimensioned contextual space. In the Yelp
dataset, the sensed data (i.e., the reviews on the business) is
voted by reviewers. For each of the sensed data, its quality
(or reward feedback) can be calculated according to the
votes it receives. We hereby assume that we get a unit of
reward if the review receives at least three positive votes.

Different from the synthetic dataset where α is control-
lable, we have to figure out an appropriate value for α when
using the Yelp dataset to partition the contextual space, since
α is an intrinsic parameter for real data. To quantitatively
evaluate our algorithm, we first illustrate in Fig. 3 the impact
of different values of α on the performance of our algorithm.
In the following, we set α = 2, 0.75, 0.25 for M = 1, 2, 3,
respectively. It is worthy to note that our algorithm still
work with an arbitrary value of α and we hereby seek for an
appropriate value for α only for the purpose of quantitative
evaluation.

Since the dataset does not include the sensing abilities
of the workers, we focus on investigating the performances
of the algorithms in terms of cumulative revenue (rather
than the expected one). In addition, we vary budget B from
2 × 104 to 4 × 105 with a step size 2 × 104 to show the
adaptivity of CAWS to different budgets. It is shown by the
results in Fig. 4 that, our CAWS algorithm outperforms the
others and its performance is very close to the ones of the
oracle (for all M = 1, 2, 3), especially under limited budget.
Furthermore, since our CAWS algorithm adaptively tunes
the granularity of partitioning the context space (according
to the number of dimensions), it results in similar cumula-
tive revenues in all the three contextual spaces. By taking
into account more relevant dimensions (e.g., by increasing
M from 1 to 2), our algorithm yields more cumulative rev-
enue. Nevertheless, a higher-dimensional contextual space
does not always imply much higher cumulative revenue.
For example, the resulting cumulative revenue in the three-
dimensional contextual space is very close to the one in the
two-dimensional contextual space.

We also evaluate the algorithms under different numbers
of workers, by using the Yelp dataset. We vary the number
of workers from 4× 104 to 1× 105 with a step size 2× 104.
We fix the budget B = 1× 105. As illustrated by the results
in Fig. 5, our CAWS algorithm yields much higher than the
others in all settings. Similar with our observations in Fig. 4,
the cumulative revenue obtained by applying our algorithm
in the two-dimensional contextual space is very close to
the one yielded by our algorithm in the three-dimensional
space. Additionally, since we partition the contextual space
with a carefully tuned granularity, the performance of our
algorithm still can be ensured when we introduce much
more workers with limited budget.

6 RELATED WORK

In the past decades, there have been a vast body of stud-
ies on the fundamental problem of worker selection in
crowdsensing systems [4, 5, 6, 7]. However, most of the
existing proposals assume that the workers’ sensing abilities

are known as prior, while such an assumption may not
be the case in practice. Therefore, there have been a few
recent studies considering the uncertain worker selection
problems where the worker’s sensing abilities are unknown.
For example, [8] studies the worker selection problem such
that the workers with uncertain sensing abilities are selected
sequentially under a limited budget to perform a given
sensing task. In [9], a multi-task assignment problem is
investigated. Therein, unknown workers are selected to
maximize the sensing revenue, such that the resulting total
cost does not exceed the budget and all the sensing tasks
can be completed. The multi-task assignment problem is
also studied in [10]. Each worker first submits its options
(i.e., a subset of the tasks), and the crowdsensing platform
assigns one of the options to each worker under a given
budget, aiming at maximizing the sensing quality. Although
these proposals leverage the CMAB framework, none of
them takes into account the constraints on the workers’
capacities. Moreover, as mentioned in Sec. 1, the arms in the
CMAB framework (e.g., the workers in [8, 10] or the com-
binations of the workers and the tasks in [9]) are exploited
and explored individually. Therefore, the standard CMAB
framework is of low efficacy especially when the number of
arms is huge while the budget is limited, as shown in Sec. 5.

Context information is very useful for crowdsensing sys-
tems and has been extensively utilized in designing worker
selection algorithms [15, 16]. In [17], the context similarities
between tasks and workers are employed to characterize
the eligibilities of the workers. The sensing tasks are then
assigned to the workers according to the eligibilities, aim-
ing at improving sensing efficiency. In [18], a context-data
quality classifier is trained from historical data in an off-
line manner. It is then used to estimate the data qualities
in an on-line manner, according to which, the workers are
selected. Although machine learning methods are applied
to train the classifier, it takes into account neither budget
constraints nor capacity constraints. In [19], the dependence
of workers’ sensing abilities on both the workers’ and tasks’
context information is learned in an on-line manner, such
that the tasks can be assigned accordingly with only budget
constraints considered.

MAB problem is a typical reinforcement learning prob-
lem and has been studied for years. So far, several well-
known algorithms, e.g., ϵ-greedy algorithm, UCB algorithm,
etc, have been proposed [20, 21]. It is then extended to
CMAB problem, to address the uncertainties in combina-
torial optimization problem [12, 22, 23, 24, 25]. Motivated
by contextual bandit where the context information of the
arms is utilized [26, 27], [28] proposes a contextual CMAB
framework which inherits properties from both contextual
bandit and combinatorial bandit. Specifically, it studies the
budget-limited worker selection problem within a given
time horizon. In each time slot, it allocates a fixed amount
of budget to either exploit or explore a group of workers.
Therefore, it cannot be applied to our problem where the
total budget is limited such that we have to make full use
of the budget to discriminate the workers with uncertain
sensing abilities. Also, it cannot handle the capacity con-
straints of the workers, whereas these constraints are the
main concerns of our CAWS algorithm.
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Fig. 3. Cumulative revenues under different values of α.
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Fig. 4. Cumulative revenue with varying budget in Yelp dataset.
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Fig. 5. Cumulative revenue with different numbers of workers.

7 CONCLUSION

In this paper, we have studied how to select among a mas-
sive number of uncertain workers with bounded sensing
capacities under a limited budget, such that the expected
total sensing revenue can be maximized with both the ca-
pacity constraint and budget constraint respected. Although
the standard CMAB framework can be applied to address
the above problem by exploring and exploiting the workers
individually, it is of quite low efficiency when the number of
workers is huge while the budget is significantly limited. To
address the above issue, we have proposed a worker selec-
tion algorithm, i.e., CAWS, which makes a trade-off between

exploitation and exploration on the partitions of the context
space instead of the individual workers. We have performed
rigorous theoretical analysis to prove the regret of our
CAWS algorithm is upper-bounded by O(B

M
α+M lnB) un-

der a properly quantified partition of the context space. We
also have conducted extensive experiments with both the
synthetic data set and the real one to verify the considerable
advantages of our CAWS algorithm over the existing state-
of-the-art CMAB-based algorithms.

APPENDIX A
PROOF OF LEMMA 2
Lemma 3. Suppose our CAWS algorithm proceeds T iterations
and let B(t) denotes the residual budget at the beginning of
the t-th iteration. Initially, B(1) = B. For each iteration
t = 1, 2, · · · , T , we have

cmin

B(t)
≤ 1

T − t+ 1
(47)

Proof. At the beginning of the t-th iteration, the residual
budget is B(t). Since we select the workers T times in total,
for any 1 ≤ t ≤ T ,

(T − t+ 1)cmin ≤ ci(t) + ci(t+1) + · · ·+ ci(T ) ≤ B(t)

based on which, we have the inequality (47).

Assume ⌊x̃∗(t)⌋ and ⌊x̂∗(t)⌋ denote the solutions by
applying the rounding-based density-ordered greedy algo-
rithm to the BKP instances (i, µQi

, ci, τi(t), B(t))Ni=1 and
(i, Ui(t), ci, τi(t), B(t))Ni=1, respectively. By replacing µQi

with Ui(t), ⌊x̂∗(t)⌋ can be considered as an estimate on
⌊x̃∗(t)⌋.

Lemma 4. If there is a worker j such that j /∈ ⌊x̃∗⌋ and j ∈
⌊x̂∗(t)⌋, then there is at least one worker j′ ∈ ⌊x̃∗⌋ such that

µQj

cj
≤

µQj′

cj′
(48)

and

1

cj

(
r̄Qj (t) +

√
2 log t

λQj (t)

)
≥ 1

cj′

(
r̄Qj′ (t) +

√
2 log t

λQj′ (t)

)
(49)

where Qj ̸= Qj′ Also, the worker j′ has non-zero residual
capacity to perform sensing tasks.
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Proof. If a worker j /∈ ⌊x̃∗⌋, then the worker j /∈ ⌊x̃∗(t)⌋,
since B(t) ≤ B. Moreover, according to the procedures
of the rounding-based density-ordered greedy algorithm,
if the worker j ∈ ⌊x̂∗(t)⌋, there exists at least one work
j′ ∈ ⌊x̃∗(t)⌋ such that

µQj

cj
≤

µQ
j′

cj′
and Uj(t)

cj
≥ Uj′ (t)

cj′
.

Also, Qj ̸= Qj′ ; otherwise, we would have both cj ≥ cj′
and cj ≤ cj′ hold since µQj

= µQj′ and Uj(t) = Uj′(t).
Also, j′ ∈ ⌊x̃∗(t)⌋ implies that the worker j′ has non-zero
residual capacity to perform additional tasks. Furthermore,
since ⌊x̃∗(t)⌋ ⊆ ⌊x̃∗⌋, j′ ∈ ⌊x̃∗⌋ and j′ can perform more
tasks.

Lemma 5. Assume our CAWS algorithm proceeds T iterations.
For ∀Q ∈ Ω, we have

P(i(t) ∈ N−
Q | T ) ≤P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) ∈ N−

Q | T )
+ (cmax/cmin)

2
/(T − t+ 1) (50)

Proof. Since

P(i(t) ∈ N−
Q | T ) = P(i(t) ∈ N−

Q , i(t) ∈ ⌊x̂∗(t)⌋ | T )
+ P(i(t) ∈ N−

Q , i(t) /∈ ⌊x̂∗(t)⌋ | T ) (51)

we can prove this lemma by deriving the upper bound of
P(i(t) ∈ N−

Q , i(t) /∈ ⌊x̂∗(t)⌋ | T )
Recall that ⌊x̂∗(t)⌋ denotes the solution of the BKP

instance (i, Ui(t), ci, τi(t), B(t))Ni=1 by the rounding-based
density-ordered greedy algorithm. Let k̂(t) denote the split
worker. Then, after selecting the worker k̂, the residual
budget is less than or equal to ck̂(t); therefore,∑

i/∈⌊x̂∗(t)⌋

xi(t) ≤
ck̂(t)
cmin

≤ cmax

cmin
(52)

Furthermore, considering the selection outputted by our
density-ordered greedy subroutine can be bounded as∑

i∈N xi(t) ≥ B(t)
cmax

, we have∑
i/∈⌊x̂∗(t)⌋ xi(t)∑

i∈N xi(t)
≤

ck̂(t)
cmin

≤ cmax

cmin
· cmax

B(t)
(53)

By substituting the inequality (47) in Lemma 3 into the
above inequality, we have∑

i/∈⌊x̂∗(t)⌋ xi(t)∑
i∈N xi(t)

≤
(
cmax

cmin

)2

· 1

T − t+ 1
(54)

Then, the upper bound of P(i(t) ∈ N−
Q , i(t) /∈ ⌊x̂∗(t)⌋ | T )

can be derived as follows

P(i(t) ∈ N−
Q , i(t) /∈ ⌊x̂∗(t)⌋ | T )

≤P(i(t) /∈ ⌊x̂∗(t)⌋ | T )
=

∑
{xi(t)}N

i=1

P(i(t) /∈ ⌊x̂∗(t)⌋ | {xi(t)}Ni=1, T ) · P({xi(t)}Ni=1)

≤
∑

{xi(t)}N
i=1

(
cmax

cmin

)2

· 1

T − t+ 1
· P({xi(t)}Ni=1)

= (cmax/cmin)
2
/(T − t+ 1) (55)

By substituting which into (51), we complete the proof.

Lemma 6. For ∀Q ∈ Ω, let YQ(t) =
∑t

t′=1 I(i(t
′) ∈ N−

Q )

denotes the number of times the workers in N−
Q is selected by our

CAWS algorithm up to the t-th iteration. We then have

E{i(t)}T
t=1

[YQ(T ) | T ] ≤ ξ lnT +
π2

3
+ 1 (56)

Proof. According to Lemma 5, E{i(t)}T
t=1

[YQ(T ) | T ] can be
written as

E{i(t)}T
t=1

[YQ(T ) | T ]

=1 +
T∑

t=dM+1

P(i(t) ∈ N−
Q | T )

≤1 +
T∑

t=dM+1

P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) ∈ N−
Q | T ) +

(
cmax

cmin

)2
T − t+ 1


≤1 +

T∑
t=dM+1

P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) ∈ N−
Q | T ) +

(
cmax

cmin

)2

lnT

≤1 +
T∑

t=dM+1

P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) /∈ ⌊x̃∗⌋ | T ) +
(
cmax

cmin

)2

lnT

(57)

We then derive the bound of the sum of the first two
items by considering Lemma 4 as follows.

1 +
T∑

t=dM+1

P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) /∈ ⌊x̃∗⌋ | T )

≤1 +
T∑

t=dM+1

P

(
r̄Q(t−1)+

√
2 log t

λQ(t−1)

cmin(N−
Q

)
≥

r̄
Q′ (t−1)+

√
2 log t

λ
Q′ (t−1)

cmax(N+
Q′ )

∣∣∣∣∣ T
)

≤ℓ+
T∑

t=dM+1

P

 r̄Q(t−1)+

√
2 log t

λQ(t−1)

cmin(N−
Q

)
≥

r̄
Q′ (t−1)+

√
2 log t

λ
Q′ (t−1)

cmax(N+
Q′ )

,

λQ(t−1)≥ℓ

∣∣∣∣∣ T


≤ℓ+
T∑

t=dM+1

P

 maxℓ≤sQ<t

r̄Q(t−1)+

√
2 log t
sQ

cmin(N−
Q

)

≥min1≤s
Q′<t

r̄
Q′ (t−1)+

√
2 log t
s
Q′

cmax(N+
Q′ )

∣∣∣∣∣ T


≤ℓ+
T∑

t=1

t−1∑
sQ′=1

t−1∑
sQ=ℓ

P

(
r̄Q(t−1)+

√
2 log t
sQ

cmin(N−
Q

)
≥

r̄
Q′ (t−1)+

√
2 log t
s
Q′

cmax(N+
Q′ )

∣∣∣∣∣ T
)

(58)

If it holds that
r̄Q(t−1)+

√
2 log t
sQ

cmin(N−
Q )

≥
r̄Q′ (t−1)+

√
2 log t
s
Q′

cmax(N+

Q′ )
, then at

least one of the following three event must happen

Event1 :
r̄Q(t− 1)

cmin(N−
Q )

−

√
2 log t
sQ

cmin(N−
Q )

≥ µQ

cmin(N−
Q )

(59)

Event2 :
r̄Q′(t− 1)

cmax(N+
Q′)

−

√
2 log t
sQ′

cmax(N+
Q′)

≤ µQ′

cmax(N+
Q′)

(60)

Event3 :
µQ′

cmax(N+
Q′)

− µQ

cmin(N−
Q )

≤
2
√

2 log t
sQ

cmin(N−
Q )

(61)

By applying the Chernoff-Hoeffding inequalities [29], we
have

P(Event1) = P

(
r̄Q(t− 1)−

√
2 log t

sQ
≥ µQ

)
≤ t−4
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Similarly,

P(Event2) = P

(
r̄Q′(t− 1)−

√
2 log t

sQ′
≤ µQ′

)
≤ t−4

When ℓ =
⌈

8 lnT
c2minδ

2
min

⌉
, for any sQ = ℓ, ℓ + 1, · · · , t − 1, we

have

µQ′

cmax(N+
Q′)

− µQ

cmin(N−
Q )

>
2
√

2 log t
sQ

cmin(N−
Q )

and thus P(Event3) = 0. Combining the above inequalities,
we have

E{i(t)}T
t=1

[YQ(T ) | T ]

≤1 +
T∑

t=dM

P(i(t) ∈ ⌊x̂∗(t)⌋, i(t) /∈ ⌊x̃∗⌋ | T ) +
(
cmax

cmin

)2

lnT

≤ℓ+
T∑

t=1

t−1∑
sQ′=1

t−1∑
sQ=ℓ

P

(
r̄Q(t−1)+

√
2 log t
sQ

cmin(N−
Q

)
≥

r̄
Q′ (t−1)+

√
2 log t
s
Q′

cmax(N+
Q′ )

∣∣∣∣∣ T
)

≤ℓ+
T∑

t=1

t−1∑
sQ′=1

t−1∑
sQ=ℓ

(P(Event1) + P(Event2) + P(Event3))

≤
⌈

8 lnT

c2minδ
2
min

⌉
+

T∑
t=1

t−1∑
sQ′=1

t−1∑
sQ=ℓ

2t−4

+

(
cmax

cmin

)2

lnT +
π2

3
+ 1

≤ξ lnT +
π2

3
+ 1

where ξ is defined in (25).

Now, we are ready to prove the inequalities (34) and
(35). Our CAWS algorithm proceeds until we have no more
residual budget to select any workers such that

P

(
T∑

t=1

ci(t) ≥ B − cmax

)
= 1 (62)

therefore, we have

B − cmax

≤ET,{i(t)}T
t=1

[
T∑

t=1

ci(t)

]

=ET

 T∑
t=1

∑
Q∈Ω

∑
j∈NQ

cjP(i(t) = j | T )


=ET

 T∑
t=1

ci∗ +
∑
Q∈Ω

∑
j∈NQ

(cj − ci∗)P(i(t) = j | T )


≤ET

[
T∑

t=1

∑
Q∈Ω

( ∑
j∈N−

Q

(cj − ci∗)P(i(t) = j | T )

+
∑

j∈N+
Q

(cj − ci∗)P(i(t) = j | T )
)]

+ ET [T ]ci∗

≤ET

[
T∑

t=1

∑
Q∈Ω

( ∑
j∈N−

Q

(cmax(N−
Q )− ci∗)P(i(t) = j | T )

+
∑

j∈⌊x̃∗⌋

(cj − ci∗)P(i(t) = j | T )
)]

+ ET [T ]ci∗

≤ET [T ]ci∗ + ET

 ∑
j∈⌊x̃∗⌋

(cj − ci∗)E{i(t)}T
i=1

[xj | T ]


+ET

[∑
Q:cmax(N−

Q
)>ci∗

(cmax(N−
Q )−ci∗ )E{i(t)}T

i=1
[YQ(T )|T ]

]
(63)

and thus

ET [T ] (64)

≥B − cmax

ci∗
− ET

 ∑
j∈⌊x̃∗⌋

cj − ci∗

ci∗
E[xj | T ]


− ET

[∑
Q:cmax(N−

Q
)>ci∗

cmax(N−
Q

)−ci∗
ci∗

E{i(t)}T
i=1

[YQ(T )|T ]

]
(65)

The validity of (34) can be proved by substituting (56) (see
Lemma 6) into the second item on the right side of the above
inequality such that

ET

 ∑
Q:cmax(N−

Q )>ci∗

cmax(N−
Q )− ci∗

ci∗
E{i(t)}T

i=1
[YQ(T ) | T ]


≤

∑
Q:cmax(N−

Q )>ci∗

cmax(N−
Q )− ci∗

ci∗

(
ξ · ET [lnT ] +

π2

3
+ 1

)

≤
∑

Q:cmax(N−
Q )>ci∗

cmax(N−
Q )− ci∗

ci∗
· h(lnB) (66)

where the second inequality holds since T ≤ B
cmin

.
We finally prove that the inequality (35) hold by the

derivation as follows

ET

TµQi∗ −
∑
Q∈Ω

∑
i∈NQ

µQE{i(t)}T
t=1

[xi | T ]


= ET

 T∑
t=1

∑
Q∈Ω

(µQi∗ − µQ)P(i(t) ∈ NQ | T )


= ET

[ T∑
t=1

∑
Q∈Ω

(µQi∗ − µQ)P(i(t) ∈ N−
Q | T )

−
T∑

t=1

∑
Q∈Ω

(µQi∗ − µQ)P(i(t) ∈ N+
Q | T )

]

= ET

[ T∑
t=1

∑
Q∈Ω

(µQi∗ − µQ)P(i(t) ∈ N−
Q | T )

−
T∑

t=1

∑
j∈⌊x̃∗⌋

(µQi∗ − µQj
)P(i(t) = j | T )

]
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≤ ET

[ T∑
t=1

∑
Q:µQi∗>µQ

(µQi∗ − µQ)P(i(t) ∈ N−
Q | T )

−
T∑

t=1

∑
j∈⌊x̃∗⌋

(µQi∗ − µQj
)P(i(t) = j | T )

]

= ET

 ∑
Q:µQi∗ >µQ

(µQi∗ − µQ)E{i(t)}T
t=1

[YQ(T ) | T ]


−ET

 ∑
j∈⌊x̃∗⌋

(µQi∗ − µQj
)E{i(t)}T

t=1
[xj | T ]


≤

∑
Q:µQi∗>µQ

(µQi∗ − µQ)h(lnB)

−ET

 ∑
j∈⌊x̃∗⌋

(µQi∗ − µQj
)E{i(t)}T

t=1
[xj | T ]

 (67)

where we have last inequality by considering Lemma 6
again.
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