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In recent years, the rapid rise of Mixed Reality (MR) and Augmented Reality (AR) technologies has transformed
digital interactions and immersive experiences, as evidenced by their widespread adoption in AR glasses,
MR headsets, and mobile AR applications. However, integrating MR and AR into everyday life also presents
unique problems, particularly concerning user interactions within limited visual fields and discomfort caused
by prolonged arm elevation. To address these challenges, our research introduces an innovative input device
utilizing common wearable device magnetometer sensors and a strong magnet as input controls. We employ
innovative methods to eliminate environmental magnetic field and soft magnetic offset, achieving trajectory
restoration with an error margin of 5.23 mm through machine learning and trajectory smoothing algorithms.
This enables our input device to interact with MR and AR devices beyond the user’s visual range, expanding
operational space, and enhancing usability.
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1 INTRODUCTION
In recent years, Mixed Reality (MR) and Augmented Reality (AR) technologies have experienced an
unprecedented surge in popularity, fundamentally altering how we engage with digital information
and immersive experiences. The widespread adoption of MR and AR devices, such as AR glasses,
MR headsets, and mobile AR applications, underscores the growing interest and investment in
these transformative technologies. These devices seamlessly integrate virtual elements into the
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Fig. 1. Manipulating MR with Limited Line of Sight Fig. 2. Manipulating MR Beyond Line of Sight

Table 1. Comparison of Different Camera Types and Prices

Model Camera Type Downward Camera Price(USD)

Apple Vision Pro Infrared cameras Yes $3,499
PICO 4 VR High-resolution color

and tracking cameras
No $657

XREAL AIR 2 ULTRA Forward camera array No $559
Rokid Air+Station Forward camera array No $252

real world, providing users with a dynamic and interactive environment. From enriching gaming
experiences to revolutionizing education and training, MR and AR have found diverse applications
in various industries.
Despite significant advancements in MR and AR technologies, as depicted in Figure 1, gesture-

based interactions between users and devices still present considerable challenges. A primary issue
arises from the limited field of view in many devices, which affects their ability to capture hand
movements effectively. For instance, as indicated in Table 1, only Apple’s Vision Pro is equipped
with downward-facing cameras that allow for tracking hands below the user’s line of sight. In
contrast, popular devices such as the PICO 4 VR, XREAL AIR 2 ULTRA, and Rokid Air+Station are
restricted to forward-facing cameras, severely limiting their ability to capture interactions outside
the immediate visual field.

This constraint on visual coverage can result in decreased accuracy and fluidity of interactions,
especially in scenarios requiring precise hand movements below eye level, such as manipulating
objects on a surface or performing detailed gesture-based tasks. Over time, these limitations not
only hinder seamless interaction but also lead to physical discomfort, such as arm fatigue from
prolonged elevation when interacting with the virtual environment. This results in a less immersive
experience and reduces the practicality of the technology for long-term use. Given these challenges,
there is an urgent need for more advanced interaction techniques that extend beyond the confines
of the current visual tracking systems. Addressing these limitations will improve both usability and
user comfort by allowing for more natural hand movements and reducing physical strain during
extended interaction sessions in MR and AR environments.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2025.



Mring: Contactless MR/AR Extended Input Method based on Magnetic Signal 1:3

Numerous previous studies have explored gesture tracking and recognition using acoustic and RF-
based techniques (with relevant references). However, both approaches have significant limitations.
Research such as EchoTrack[29] and VoLoc[4] has utilized acoustic signals, leveraging echo effects
for human positioning and identification. These methods are highly sensitive to ambient noise,
which can lead to significant distortion in noisy environments, making them unsuitable for tasks
requiring high precision. As for RF-based works, such as WiGesture[9] and CrossGR[11], although
RF signals have a greater sensing range compared to acoustic waves, they suffer from issues such
as signal attenuation, reflection, and low resolution in distance perception. These factors result in
reduced positioning accuracy and reliability, which fail to meet the precision demands of MR and
AR systems. Additionally, RF signals are susceptible to interference from other RF sources, further
compromising their effectiveness in dynamic or cluttered environments.
In contrast, magnetic signals are less variant and more stable compared to RF and acoustic

signals. They are less susceptible to external environmental factors such as noise and interference,
ensuring stable and accurate tracking. Additionally, magnetic signals maintain their integrity even
in complex environments, providing consistent and reliable data for precise tasks. Moreover, the
use of magnetic sensing often comes at a lower cost compared to other technologies, adding an
economical advantage. This combination of effectiveness, reliability, and cost-efficiency makes
magnetic signals a novel and effective choice for meeting the demands of MR and AR interactions,
where stability and adaptability are crucial.

As a solution, we propose a system called Mring, which is illustrated in Figure 2. This system
utilizes a wearable magnet (Mring) in combination with magnetometer sensors integrated into
smartphones or smartwatches. This approach leverages the benefits of stationary device stability,
while also offering an ergonomic and energy-efficient design for precise control during interactive
tasks like handwriting and sketching in MR/AR environments. This system utilizes a wearable
magnet on a ring and integrates magnetometer sensors within stationary devices such as smart-
phones and smartwatches. This allows for precise interactions, even when the device is outside
the user’s direct line of sight, by capturing subtle hand movements. The stationary nature of the
devices supports natural user behavior, where stabilizing the device during tasks like writing and
drawing allows for better focus and minimizes physical strain. Moreover, this approach aligns with
the real-world expectations of Human-Computer Interaction, where users typically stabilize their
devices to concentrate fully on fine-tuned movements. This principle is respected in our design,
ensuring the device remains stationary to improve usability and satisfaction. By avoiding the need
for users to hold their arms up for extended periods, our system allows for a more comfortable and
healthy sitting posture during prolonged interactions. In practical terms, imagine a user sitting
at a desk with their smartphone on the table, interacting through the Mring. The smartphone,
while stationary, effectively tracks the magnetic signals from the ring, enabling precise tracking
of the user’s hand movements. This setup not only ensures stable signal capture and accurate
interaction but also minimizes power consumption and removes the requirement for external
hardware, making it both cost-effective and suitable for everyday use.

By focusing on these key aspects of device stability, user ergonomics, and seamless integration
with existing technology, the Mring system enhances precision and control in MR/AR environments,
supporting a fluid and natural interaction experience that is both intuitive and satisfying.

To achieve our research objectives, we encountered several challenges:
Electromagnetic Interference: Compared to traditional magnetic environments, the simul-

taneous use of AR and MR devices results in significant electromagnetic interference, leading to
substantial data disturbances. Additionally, the surrounding soft magnetic effects have a consider-
able impact, causing the magnetic background data to be nonlinear and unstable.
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User/Scene Adaptation: Dealing with diverse scenarios and user usage, particularly on the
smartwatch platform, requires special adaptation due to computational constraints. Additionally,
specialized transfer learning is necessary for different environments and user scenarios to ensure
the system performs well in various situations. Personalized adaptation and specialized transfer
learning require additional time and resources, but are crucial for improving the overall performance
and user experience of the system.
Our research tackles significant challenges in the realm of MR and AR interactions. Firstly, we

combat electromagnetic interference by employing noise filtering and stabilizing the background
magnetic field through linearmethods.We then process data using amagnetic dipolemodel and train
neural networks to handle soft magnetic offsets. Additionally, our system achieves an impressive
5.23 mm precision level, ensuring accurate user trajectory reconstruction even in areas with weak
magnetic signals. This precision, coupled with our trajectory smoothing algorithm, enhances
the overall user experience. Furthermore, we address the diversity of scenarios by developing
a comprehensive calibration approach for different users and environments. For smartwatches,
we optimize computational costs by distilling models from smartphones while maintaining high
accuracy levels. This integrated approach allows us to overcome key challenges, delivering a robust
and adaptable system for MR and AR technologies.

Specifcally, our contributions include:
• We propose a novel interaction method for application in MR and AR devices, utilizing low-
cost permanent magnets as input devices. This method involves collecting and processing
signals for positioning and trajectory reconstruction, enabling operation of MR and AR
devices outside the line of sight.
• We introduce an innovative approach to address soft magnetic offset, employing a magnetic
dipole model for initial processing and further refinement using neural networks.
• Our trajectory reconstruction average error is approximately 5.23mm. On the smartphone
platform, the average error can be reduced to around 4.55mm, while on the smartwatch
platform, it is approximately 7.02mm.
• Our localization and trajectory tracking services are implemented across multiple platforms,
including smartphones and smartwatches. We also optimized the model for smartwatches by
performing model distillation to overcome computational limitations, the error increased by
only about 1mm compared to the original model.

The remainder of this paper is organized as follows: In Section II, we present related work. Section
III outlines the overall design of our system. In Section IV, we delve into our research, providing a
detailed analysis of signal processing, soft magnetic offset correction, localization recognition, user
adaptation, and trajectory reconstruction algorithms. Section V discusses further optimization of
the system. Section VI explores the limitations of our system. Finally, Section VII concludes this
paper.

2 RELATEDWORK
Modern technology has made hand tracking essential in many areas like virtual reality, healthcare,
intelligent interaction, and industrial production[18, 30, 40, 41]. This section will review different
methods of hand tracking, with a particular focus on the applications and advancements in utilizing
acoustic signals, RF signals, and magnetic signals.

2.1 MR/AR Applications
Recently, with the continuous maturation of MR (Mixed Reality) and AR (Augmented Reality)
devices, various practical applications based on MR and AR have emerged one after another. This
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has allowed head-mounted devices to play a significant role in multiple fields. In the industrial
sector, Anthony Paul Franze et. al [8] design more efficient fabrication and assembly practices using
MR/AR devices; In the realm of creative work, MR has also played a significant role. Xiangwen
Xiong et. al [33] proposed a method, which can eliminates the gravity and weight of the devices
and components that mounted and dressed in the human body, but also come true the interacting
scenes and following behaviors and actuations in story lines. Virtual Makerspaces [19] present a
mixed-reality system for remote collaborations, where collaborators can discuss, explore, create and
learn about 3D physical objects. Additionally, other technology [7, 10, 16, 20, 23] have expanded
the infinite possibilities of MR/AR devices in other areas, such as reading, medicine, interpersonal
communication, and more.

2.2 Hand Tracking Applications
2.2.1 Acoustic-based. Acoustic-based hand tracking is a prevalent method for estimating hand
positions and gestures by capturing sound or ultrasonic signals through microphones or ultra-
sonic sensors[26, 27, 34]. Strata[36] introduces a novel approach by utilizing a mobile device (e.g.,
smartphone) that transmits known audio signals at inaudible frequencies and analyzes the signal
reflected by the moving finger to accurately track its location. LLAP [28] and FingerIO[14]represent
significant advancements in acoustic signal-based tracking by using the reflected audio signals
from a mobile phone for finger movement detection. LLAP employs a phase-based tracking system,
enhancing accuracy and reducing the complexity involved in the signal processing chain. Con-
versely, FingerIO utilizes OFDM symbol-based movement detection, which provides robustness
against noise and improves the precision of near-field finger tracking. While these systems achieve
high precision in gesture tracking, their performance can be limited in complex environments
such as underwater settings, where signal degradation is prominent. Acoustic signal-based hand
tracking, as seen in methods like Strata, LLAP, and FingerIO, faces significant limitations. These
systems are prone to noise interference, which can distort tracking accuracy in noisy environments.
Additionally, they pose privacy risks by potentially capturing sensitive audio. Physical barriers
also hinder their effectiveness, as acoustic signals have limited penetration capabilities.
Mring distinguishes itself by utilizing magnetic signals, which provide stable and accurate

tracking, even in noisy or dynamically changing environments. Unlike acoustic signals that are
often compromised by noise and other environmental factors, Mring’s magnetic tracking maintains
integrity and reliability. This stability is crucial for ensuring accurate tracking data in complex
settings, where acoustic methods may struggle with interference and distortions. As a result, Mring
consistently delivers reliable data for precise tasks, demonstrating its robustness and adaptability.

2.2.2 RF-based. In our review of WiFi-based gesture recognition and tracking methods, we’ve
identified several inherent limitations associated with RF technologies, as highlighted in key studies
like WiSee [17], WiTrack [2]. These systems, while leveraging RF signals to cover expansive
areas, often encounter significant challenges such as attenuation and reflection, particularly in
complex or cluttered environments. This degradation can critically impair positioning accuracy
and reliability, which are essential for precise tracking tasks. Moreover, these RF signals are highly
susceptible to interference from other RF sources, further compromising their tracking accuracy.
Additionally, studies such as mTrack [31] and Soli [24] employ 60 GHz signals that demonstrate
reduced interference and promise enhanced precision. However, they also reveal critical limitations
related to the necessity for substantial additional hardware, which escalates costs and complicates
deployment. These systems also grapple with bandwidth limitations, a notable drawback of RF
technologies that can restrict data transmission rates, adversely impacting the responsiveness and
accuracy of the tracking system.
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In contrast, Mring achieves exceptional stability through the use of advanced noise reduction
and signal processing techniques. It utilizes magnetic signals, which are free from the bandwidth
constraints typical of RF signals and offer superior security. Leveraging the magnetometers already
present in smartphones, Mring eliminates the need for additional hardware, enhancing its cost-
effectiveness. The integration of these advanced technologies allows Mring to adapt to a variety of
environments, enhancing its practicality and effectiveness in MR and AR applications.

2.3 Magnetic Tracking
2.3.1 Permanent Magnets-based. In recent studies, several innovative methods for utilizing mag-
netic fields in tracking systems have been developed, each demonstrating unique capabilities but
also exhibiting limitations in flexibility and precision. MagneTrack[1] enables continuous and
simultaneous 1-DOF tracking of two magnets by employing a magnetic field separation method.
FieldSweep [13] offers a 2D tracking system on a plane using permanent magnets and a smartphone.
Additionally, input techniques to the surface around a smartphone use magnets attached to a stylus
for graphical matching. SynchroWatch [21] recognizes one-handed synchronous smartwatch ges-
tures through correlation and magnetic sensing. TRing [35] introduces a finger-worn input device
for instant and customizable interactions with objects. Lastly, MagX [5] presents an untethered
hand tracking system utilizing passive magnets and a novel magnetic sensing platform. While
these advancements highlight the diverse applications and capabilities of magnetic-based tracking
technologies, they often lack the flexibility and precision needed for more dynamic and detailed
interaction scenarios, which can limit their practical usability in complex environments.

Moreover, in the realm of utilizing permanent magnets for tracking, compared to the aforemen-
tioned endeavors, there is a greater emphasis on single magnetometry. However, Mring offers higher
precision and greater flexibility compared to previous methods. Instead of relying on fixed pattern
matching, it utilizes a combination of recognition-based positioning and trajectory optimization
algorithms. This enables the restoration of user inputs. Moreover, Mring utilizes only a single
magnet and the magnetometer on a smartwatch, eliminating the need for additional hardware.
This not only further reduces the cost but also enhances the user experience.

2.3.2 Electromagnets-based. In addition, there has been a development in utilizing electromagnets
for magnetic sensing. MagSound [25] leverages the electromagnetic effects of earphones to enhance
tracking and acoustic sensing in Commercial-Off-The-Shelf (COTS) earphones. Magnetips [12]
integrates fingertip tracking and haptic feedback for around-device interaction. Aura [15] presents
an inside-out electromagnetic 6-DoF tracking system designed for handheld controllers. Make It
Trackable [22] introduces an instant magnetic tracking system using coil-free tiny trackers. Finally,
Finexus [6] enables precise motion tracking of multiple fingertips through magnetic sensing.
In terms of hand positioning and recognition, electromagnetic tracking necessitates the use of
additional equipment such as coils, which is less convenient compared to Mring.

3 SYSTEM OVERVIEW
Our system primarily relies on magnetic sensing technology and is divided into three progressive
stages: magnetic signal processing, user and environment adaptation, and trajectory smoothing
and reconstruction. The process is illustrated in Figure 3. The initial stage focuses on processing
the magnetic signals received by the smartwatch, with an emphasis on mitigating environmental
interference. In the second stage, parameters are calibrated in a specific manner, and data on the
user and environment are collected to address their impact on the magnetic signals. Finally, the
processed data is used to train complex neural networks to obtain the user’s input coordinates,
which are then further refined through a trajectory smoothing algorithm to minimize errors.
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Fig. 3. System Overview of Mring

Magnetic Signal Processing: In this phase, we process the magnetic signals received by the
smartwatch to remove environmental influences. Firstly, we use filtering techniques to reduce
noise in the received data. Then, we address the effects of the ambient magnetic field, which mainly
consist of two components: the Earth’s magnetic field and magnetization effects caused by nearby
metals or electronic components due to the presence of magnets, which significantly affect the
magnetic data.

Magnetization effects can be categorized into two types: hard magnetic effects and soft magnetic
effects. Hard magnetic effects are stable over time and can be eliminated together with the Earth’s
magnetic field.We employ a sliding-window approach to calculate the real-time ambient background
magnetic field and remove it. However, soft magnetic effects are unstable and nonlinear, closely
related to the properties of materials. Therefore, we opt for training a neural network to accurately
remove the soft magnetic offset.

Additionally, it’s important to note that the choice of neural network for handling soft magnetic
effects involves considerations such as training data, model architecture, and validation methods to
ensure effective removal of soft magnetic distortions.

User and Environment Adaptation: Due to the diverse scenarios of use of the smartwatch, we
employ transfer learning techniques to adapt to different environments and users. When users enter
a new environment, specific actions are required to gather new features related to the environment
and the users. This adaptation process only requires a small number of user samples to achieve
effective adaptation.

Positioning Recognition: In this phase, we utilize a sophisticated neural network comprising
two distinct sections, each with six hidden layers, to train the conversion of magnetic signals into
positioning coordinates. Given that the target usage scenario is a smartwatch, we also perform
knowledge distillation on the model to ensure smooth operation on the smartwatch chip. Finally,
we employ trajectory smoothing algorithms to concatenate the identified points and obtain the
final user input result.
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It’s worth noting that the choice of neural network architecture, training techniques such as
knowledge distillation, and the integration with smartwatch hardware constraints are critical
aspects of this phase’s implementation for accurate positioning and user-friendly performance.

4 MAGNETIC SENSING
In this section, we explore the key aspects of magnetic sensing, a critical component of our study.
This chapter focuses on the design and calibration of a magnetic sensing system for smartwatches,
using permanent magnets for interaction. We address the challenges in signal processing, particu-
larly in adapting to environmental magnetic fields and reducing noise, to enhance the accuracy
and reliability of the system. Furthermore, we discuss the development of specialized models for
soft magnetic correction and position recognition. These models, developed through deep learning
techniques, aim to refine the system’s precision in detecting positions. This overview provides a
foundation for the detailed discussions that follow, outlining our approach to improving magnetic
sensing technology.

4.1 Signal Processing
4.1.1 Noise Reduction Processing. In the noise reduction process of signal processing, we implement
the Kalman filter, a sophisticated algorithmwell-suited for handling data with inherent uncertainties.
The core of our magnetic sensing system involves interpreting magnetic force vectors, which are
expressed as three-dimensional arrays (x, y, z). Under standard conditions, these vectors tend to
change smoothly over time. However, the environmental magnetic field can experience abrupt
fluctuations, which introduce significant noise into the magnetic data.

The Kalman filter [32] is particularly effective in this scenario. Its primary function is to smooth
out the data by providing a statistically optimal estimate of the magnetic vector state. By doing so, it
effectively eliminates the noise caused by sudden changes in the environmental magnetic field. This
ensures the integrity and reliability of the magnetic signal, especially in dynamic environments.
Consequently, the application of the Kalman filter is crucial for maintaining the precision of our
magnetic sensing system, as it allows for a more accurate interpretation of the magnetic field
variations, which is critical for the system’s overall performance.

4.1.2 Environmental Magnetic Field Elimination. In the process of environmental magnetic field
elimination, our approach relies on the stability of the magnetic field in the surrounding environ-
ment. The initial step involves calculating the cosine similarity of magnetic field vectors to assess
changes in the environmental magnetic field. This is achieved by comparing the cosine similarity
of the current magnetic vector with the previous one.

The cosine similarity, denoted as CS, is defined as:

CS =
V𝑐 · V𝑝

∥V𝑐 ∥∥V𝑝 ∥
, (1)

where V𝑐 and V𝑝 represent the current and previous magnetic vectors, respectively. This similarity
measure is then compared with a predefined threshold to determine the stability of the environ-
mental magnetic field. If the field is deemed stable, the system continues to record magnetic vectors
until instability is detected.
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Once the environmental magnetic field is considered unstable, the most recent 20 recorded vectors
are analyzed. For each component of the magnetic vector (𝑥 , 𝑦, and 𝑧), the mean is calculated by

V𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑉𝑥,𝑖 , (2)

V𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

𝑉𝑦,𝑖 , (3)

V𝑧 =
1
𝑛

𝑛∑︁
𝑖=1

𝑉𝑧,𝑖 , (4)

where V𝑥 , V𝑦 , and V𝑧 represent the mean values of the components 𝑥 , 𝑦, and 𝑧 of the magnetic
vector, respectively, and 𝑛 is the number of vectors considered (in this case 20).

These mean values are then used to adjust the magnetic vector data, effectively eliminating the
influence of the environmental magnetic field. This adjustment is crucial for ensuring the accuracy
of subsequent signal processing and positioning tasks.

4.2 Modeling for Positioning and Magnetic Correction
Delving into the intricacies of model training, our exploration begins with the development of a
specialized model tailored to address soft magnetic offsets. The paramount goal is to rectify data,
thereby augmenting the overall accuracy of our experimental results. Following this, we investigate
target localization recognition based on the refined data set. Ultimately, through the application
of model transfer techniques, we endeavor to ensure the adaptability of our model across diverse
environmental contexts.

4.2.1 Soft Magnetic Correction Model Training. Magnetic interference is a critical factor to consider
in positioning and recognition systems, as it can significantly affect accuracy[39]. To address
this, it is important to categorize and understand the different sources of interference. Magnetic
interference can be divided into two main types: Hard Magnetic Interference and Soft Magnetic
Interference.
Hard Magnetic Interference is caused by materials such as Neodymium-Iron-Boron, which

are commonly used in refrigerator magnets and headphones, and Ferrite, found in household
speakers, radios, and TV antennas. These materials generate strong, stable magnetic fields that
can distort positioning accuracy if not accounted for. In contrast, Soft Magnetic Interference arises
from materials like Silicon Steel (used in phone chargers and power adapters), Soft Iron (used in
electromagnetic door locks and speakers), and Nickel-Iron Alloys (found in computer hard drives
and televisions). These materials produce more variable magnetic fields that are sensitive to external
factors, making them more challenging to manage in real-time systems.
Moreover, the challenge of measuring and mitigating these effects is compounded by the non-

linearity of magnetic materials, which is illustrated by the hysteresis curve. This nonlinearity
makes it difficult to use a unified model for calculating magnetic effects, particularly when dealing
with soft magnetic interference from common appliances. By categorizing the sources of magnetic
interference and understanding their behavior, we can better design systems that mitigate their
impact and improve overall accuracy.

The initial data pre-processing involves the application of the magnetic force formula to mitigate
soft magnetic offsets induced by magnetic influences [37]. Initially, the magnetic field strength (𝐻 )
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is calculated using the magnetic dipole formula:

𝐻 =
1
(4𝜋)

𝑚

𝑟 3
, (5)

where𝐻 represents the magnetic field strength at the calculated position,𝑚 is the magnetic moment,
𝑟 is the distance, and other variables are appropriately defined. Subsequently, considering ideal
magnetometer conditions, the measured magnetic field which is written as𝑀𝑎𝑔 is obtained as the
projection of Earth’s magnetic induction in the body coordinate system, given by:

𝑀𝑎𝑔 = 𝐷 ·𝑀𝑎𝑔𝑒𝑐 , (6)

where 𝐷 represents the matrix describing the orientation transformation from the Earth coordinate
system to the body coordinate system.𝑀𝑎𝑔𝑒𝑐 denotes the magnetic induction strength in the Earth
coordinate system, projecting the magnetic field within that frame of reference.

Further, the relationship between magnetic flux density (𝐵) and magnetic field (𝐻 ) is expressed
by:

𝐵 = 𝜇 · 𝐻 = 𝜇0 · 𝜇𝑟 · 𝐻, (7)
By simultaneously solving the above equations, the following formula can be derived:

𝐵 = 𝜇
1/2
0 · 𝜇𝑟 · (𝜇0 −𝑚 · 𝐵𝑟 )

3/2 · 𝑟 · (𝑡−𝑎), (8)

where 𝜇0 is the permeability of free space, 𝜇𝑟 is the relative permeability,𝑚 is the magnetic moment,
𝐵𝑟 is the remanence, 𝑟 is the distance, 𝑡 is time, and 𝑎 is an exponent that captures the diminishing
effect of soft magnetic offsets over time. The term 𝑡−𝑎 signifies the decay of soft magnetic effects as
time progresses.
Through preliminary experiments, we first conducted trials in a non-magnetic environment,

devoid of any materials that could induce soft magnetic effects, to establish baseline data collection.
Subsequently, we replicated these experiments in a conventional environment, where typical
ambient magnetic disturbances are present, to gather comparative data. Each experimental setting
involved the collection of data over ten sessions.

For our analysis, we paired one set of data from the non-magnetic environment with one from the
conventional environment, calculating the cosine similarity for each pair. The process was repeated
for ten such pairs, and the average cosine similarity across all pairs was found to be approximately
0.98. This high level of similarity suggests that while the soft magnetic effects can cause noticeable
disturbances at the edges of the experimental area, particularly with the millimeter-level precision
required, the overall direction of the magnetic force vectors remains largely unaffected. This
consistency underscores the need to determine a magnitude factor to accurately recover the
original true data from the measurements obtained under typical environmental conditions.

Utilizing this insight, the formula provides a foundation for determining the key variables influ-
encing soft magnetic offsets. By isolating environmental constants and focusing on the remaining
variables such as magnetic moment, distance, and time, we can use machine learning techniques
to fit the impact of these parameters. This approach allows us to preliminary estimate the effect
of soft magnetic offsets and progressively refine the model to reduce their impact on the system,
thereby improving the accuracy of magnetic readings.
In our pursuit of an effective soft magnetic offset correction model, we established a universal

standard for assessing accuracy. This standard relies on the Euclidean Distance metric, which
quantifies the spatial difference between the predicted and true data vectors. By comparing the
Euclidean Distance to a predefined threshold (k), we can evaluate the success of the calibration
process. Building on the previously identified variables influencing soft magnetic offsets, our model
adjusts these parameters through machine learning techniques to minimize the Euclidean Distance.
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Table 2. Summary of Model Parameters and Accuracy

Model Setting Size(kb) Error(mm)

RF 100 Trees,min samples split: 2,min samples leaf: 1 68234 11.32
SVR RBF kernel,C=100,epsilon=0.1 987 7.53
NN 6 hidden layers,An average of 200 neurons per layer 810 5.02

(a) RF (b) SVR (c) NN

Fig. 4. Localization Error(mm) of Different Models

This ensures that the corrections made to account for soft magnetic offsets are as precise as possible,
leading to improved accuracy in the magnetic tracking system.

With this standard in place, we initially explored three fundamental machine learning approaches:
linear regression, decision trees, and random forests. Remarkably, linear regression demonstrated
optimal performance, achieving an tracking error of 8.32mm. This notable success motivated further
investigation and subsequent model optimizations.
Despite marginal improvement with regularized linear models (Ridge and Lasso regression),

reaching an error of around 7mm, our final experimentation introduced a multilayer perceptron
neural network. This advanced model outperformed traditional linear approaches, achieving an
impressive error of 5mm. Evaluation of the neural network’s effectiveness continued to rely on the
established Euclidean Distance metric.

4.2.2 Position Recognition and Model Integration. We utilize a dataset comprising four groups
for training and one group for testing to assess the performance of three lightweight machine
learning models: Random Forest (RF), Support Vector Regression (SVR) with a radial basis function
(RBF) kernel and Neural Network (NN). The experimental setup and the model sizes are detailed in
Table 2, while the average localization error is illustrated in Figure 4.

Evaluation includes measuring the inference time per sample on a desktop equipped with an
Intel i5-12400F CPU.

All three models demonstrate an achievement of millimeter-level error in localization accuracy.
Notably, the overhead of the Neural Network (NN) is observed to be more balanced compared to
RF and SVR. Figure 10 visually represents that the error distribution of NN is more even across the
dataset. Based on the findings, NN is selected as the machine learning model for tracking Mring
using magnetic field strength.
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Fig. 5. Data Collection on Different Platforms

In conclusion, the study demonstrates the suitability of Neural Network for accurate Mring
tracking based on magnetic field strength, emphasizing the need for model retraining when there
are changes in the device models involved.

4.2.3 Application of Transfer Learning. In the domain of transfer learning, our research focuses on
expanding application scenarios and user features. Additionally, we address the segmentation of
various subjects within these scenarios, such as human users and various hardware configurations.
Leveraging pre-trained models from previous training sessions, we intend to adapt the system to
these novel environments through a meticulous process.
The experimenters were instructed to pause at several strategically selected fixed positions to

ensure comprehensive data collection. We used completely different feature extraction methods for
smartphones and smartwatch platforms. However, the underlying reasons for these methods are
the same: to effectively collect and utilize user interaction data with smart devices.
• Personalized Hand Size Data: These joints represent key anatomical points that produce
personalized body data crucial to understanding user interactions with the smartwatch.
• Usage Range Delineation: By pausing at these fixed positions, we delineate the subsequent
usage ranges of the smartwatch, facilitating a more nuanced analysis of user interactions
and environmental effects.

In detail, experimenters are instructed to pause for 3 seconds at the following fixed positions.
Smartphone Platform: Due to the magnetometer of smartphones typically being located on

the right side, its usage range is oriented towards the right side of the phone. As shown in Figure 5a,
the user must define the usage range by determining four points within a rectangle. Specifically,
these four points are:
• Two vertices on the right side of the phone, 2cm from the right edge.
• Any point to the right of the above two points, at a certain distance (not exceeding 10cm),
determined by the user.

Smartwatch Platform:We assume that the input area of the smartwatch is the user’s dorsal
hand area where the smartwatch is worn. Therefore, as shown in Figure 5b, it’s necessary to confirm
the boundaries of the user’s dorsal hand area, specifically:
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• The center of the right edge of the smartwatch.
• Each of the four joints on the back of the hand, excluding the thumb.

This deliberate pause duration and position selection ensure a comprehensive sampling of data
points that encapsulate various aspects of user interactions and environmental conditions. Ad-
ditionally, it enables the subsequent fine-tuning and adaptation of the system to diverse usage
scenarios encountered in airborne and underwater environments.

The initial phase of data preparation entails meticulous organization of the gathered data into a
format tailored for training neural networks. Given that the data set comprises three-dimensional
magnetic vector values (represented by x, y, and z coordinates), we integrate this information with
corresponding environmental labels (e.g., "underwater" or "airborne") to form cohesive training
samples.
Following this, we deliberately selected a pretrained neural network model to serve as our

foundational framework. This model exhibits a robust capability to adapt to the intricacies of
magnetic vector localization tasks, characterized by its depth, complexity, and inherent sensitivity
to magnetic data.

In preparation for transfer learning, we meticulously loaded the chosen base model and embarked
on a fine-tuning process. Here, we made a strategic decision to maintain the integrity of the
majority of the base model’s parameters while selectively adjusting parameters within its final
layers. Furthermore, we leveraged automated tuning tools such as Grid Search to systematically
explore optimal hyperparameter combinations, thereby enhancing the model’s adaptability to novel
environmental contexts and diverse datasets.

Subsequently, armed with the fine-tuned model, we proceeded to train our dataset, guiding the
model to assimilate and comprehend the nuances present in the newly collected data. Following
this training phase, we subjected the fine-tuned model to comprehensive performance evaluations,
scrutinizing its efficacy and robustness in handling the designated localization task.

4.3 Model Distillation
A simplified student model is designed with careful consideration of the resource limitations in-
herent in smartwatches, which typically have significantly lower processing power and memory
compared to smartphones[38]. To address these hardware constraints, we employed model dis-
tillation, a technique that allows us to transfer essential knowledge from a larger, more complex
teacher model to a smaller, more efficient student model. This method not only reduces the size
and complexity of the model but also ensures that the student model retains key performance
characteristics, allowing it to operate effectively within the limited computational capacity of
smartwatches.

By distilling the knowledge from the teacher model, we compress the critical information into the
student model while maintaining an acceptable level of accuracy and efficiency. This approach is
particularly beneficial for ensuring real-time operation on smartwatches, where resource constraints
make running large, high-complexity models impractical. Compared to traditional transfer learning,
which fine-tunes a pre-trained model without necessarily reducing its size, model distillation
specifically targets reducing the model’s computational and memory footprint, enabling the system
to run efficiently on low-power devices without sacrificing essential performance. The basic process
of model distillation is illustrated in Figure 6.

4.3.1 Teacher Model Training. We trained the model on the smartphone platform as the teacher
model to validate the system design and collect data. We developed a dedicated smartphone
application specifically for data collection and initial model training. As previously mentioned, data
collection and processing occurred on smartphones, while subsequent teacher model training took
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Fig. 6. Model Distillation

place on server infrastructure. The teacher model is a sophisticated neural network consisting of
two independent parts, each with six hidden layers, trained using the collected data. The first part
of the neural network processes raw input data to generate output used for further training in the
second part.

4.3.2 Student Model Training. In this phase, the focus shifted towards the development and training
of a simplified student model tailored to the resource constraints imposed by the smartwatch
environment. The following steps were undertaken:
Designing a Simplified Student Model: A key aspect involved in this phase was the redesign of

the student model to align with the limited computational resources available on smartwatches.
Accordingly, the number of hidden layers was reduced to three, ensuring compatibility with the
device’s constraints.

Determining Distillation Loss Weight: To facilitate effective knowledge transfer from the teacher
model to the student model, it was necessary to establish an appropriate weight for the distillation
loss. This weight serves to balance the primary task loss with the similarity between the outputs
of the teacher and student models. A weight of 0.5 was selected based on experimentation and
empirical observations.
Training the Student Model: The training process involved using the output of the teacher

model as an auxiliary target and integrating the distillation loss term into the overall loss function.
Through this approach, the student model was trained to simultaneously learn the target task and
assimilate the knowledge distilled from the teacher model.

Evaluating the StudentModel: After training, the performance of the student model was evaluated
to assess its efficacy and compare it with the teacher model. Notably, the student model had an error
only about 1mm higher than the teacher model, and the overall trajectory pattern reconstruction
was essentially consistent, demonstrating the effectiveness of the distillation process in transferring
knowledge to a resource-constrained environment such as a smartwatch.

4.4 Trajectory Smoothing and User Input Processing
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Algorithm 1 Trajectory Smoothing and User Input Processing
Require: Trajectory points 𝑇𝑝
Ensure: Smoothed trajectory 𝑇𝑠
1: for 𝑖 from 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝 ) do
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑇𝑝 [𝑖]
3: 𝑤𝑖𝑛𝑑𝑜𝑤 ← 𝑇𝑝 [𝑖 −min(window_size, 𝑖 − 1) : 𝑖]
4: 𝑙𝑜 𝑓 ← 𝐿𝑂𝐹 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑤𝑖𝑛𝑑𝑜𝑤)
5: if 𝑙𝑜 𝑓 > 𝑡ℎ𝑟𝑒 then
6: 𝑟 ← 1
7: while 𝑟 ≤ 𝑚𝑎𝑥 do
8: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ← 𝑇𝑝 [𝑚𝑎𝑥 (1, 𝑖 − 𝑟 ) : min(𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝 ), 𝑖 + 𝑟 )]
9: 𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑤𝑖𝑛𝑑𝑜𝑤𝑠 )
10: if 𝑝𝑜𝑖𝑛𝑡𝑠 == 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
11: 𝑇𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑜𝑖𝑛𝑡𝑠 )
12: break
13: else
14: 𝑙𝑜 𝑓𝑠 ← 𝐿𝑂𝐹 (𝑝𝑜𝑖𝑛𝑡𝑠 ,𝑤𝑖𝑛𝑑𝑜𝑤)
15: if 𝑙𝑜 𝑓𝑠 < 𝑙𝑜 𝑓 then
16: 𝑇𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑜𝑖𝑛𝑡𝑠 )
17: break
18: else
19: 𝑟 ← 𝑟 + 1
20: end if
21: end if
22: end while
23: else
24: 𝑇𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
25: end if
26: end for
27: return 𝑇𝑠

After preprocessing the data, which resulted in obtaining the index of the user’s input positions,
the necessary step to obtain the final trajectory is trajectory smoothing, following the specific
process outlined in Algorithm 1.

Algorithm 1 initially employs the Local Outlier Factor (LOF) [3] algorithm to detect outlier points
on the trajectory. The LOF algorithm, based on local density estimation, excels at identifying points
significantly deviating from their local neighborhoods. The local density of a data point can be
defined as the sum of the reciprocals of the distances from its neighboring data points. A higher
density indicates denser neighboring data points, while a lower density implies that the point
resides in a relatively sparse region.

Considering the sequential nature of the trajectories, we utilized a sliding-window approach to
compute the local density of each point. In particular, only the preceding points in the trajectory are
considered neighbors when computing the local density. This selective consideration enables the
algorithm to focus more on the immediate vicinity of each point, thereby mitigating the influence
of the entire trajectory dataset.

When outlier points are detected, we apply data smoothing techniques, specifically the moving
average method, to address them. The moving average algorithm operates by iteratively increasing
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the radius of a moving window and computing the average within it. If the average remains
unchanged upon increasing the radius, the current point is considered a valid result. However, if
the average changes, we prioritize points with higher local density to ensure that the replacement
maintains the integrity of the trajectory while minimizing the impact of outliers.

By adhering to the aforementioned steps outlined in Algorithm 1, we aim to achieve trajectory
smoothing and improve the quality and usability of the trajectory data for further analysis and
applications.

5 EVALUATIONS
In this section, we will specifically describe our experiments. We independently developed software
for both mobile and watch platforms to collect data and calculate trajectories. We conducted
multiple sets of experiments to ensure our system performs excellently under various inputs.
Additionally, we performed numerous comparative experiments to demonstrate the effectiveness of
our smoothing algorithm and model distillation. To evaluate robustness in different environments,
we conducted tests under varying conditions and obtained satisfactory results. Finally, we collected
usage data from 25 volunteers to test the stability of our system and user experience across multiple
dimensions.

5.1 Implementation
We have implemented a prototype of Mring to validate its performance in 2D tracking and hand-
writing. To facilitate the use of optimizers and machine learning models, we have implemented
Mring using a client-server architecture. We developed an application on the Android platform as
well as the Android Wear platform that can collect magnetometer readings and provide calibration
instructions. We set the magnetometer’s sampling rate to 50 Hz, which means it collects 50 magnetic
data points per second. We send this data to the PC platform for processing. Additionally, we have
developed standalone software on the PC platform for real-time data reception, processing, and
visualization. The default mobile device is the vivo X100 Pro, and the default smartwatch device is
the Google Pixel Watch. During the initial run, we first define the area. Following the procedure in
section four, we collect user’s writing boundaries and environmental data through fixed steps for
calibration. Afterward, we use a ring embedded with a strong magnet for writing.

5.2 Tracking on Smart Phone Platform
5.2.1 Set Up. We first prepared an A4 paper with a grid pattern to indicate position coordinates.
The grid consists of 5mm×5mm squares, making up a grid area of 16 cm×10 cm, roughly matching
the length and width of the test phone, in line with the region division strategy I introduced in
section four. We calculate the coordinates of each grid square with the origin at the top-right vertex
of the grid closest to the phone. The initial distance between the earpiece and the smartphone
is 2 centimeters. Initially, we moved the ring in a serpentine pattern following the coordinate
sequence, pausing for 2 seconds at each grid position to collect the relationship between grid
position information and magnetic coordinates. Afterward, we traced the path on the paper’s grid
as ground truth, then moved the ring along the path at the same time intervals.

5.2.2 Tracking Result and Impact of Trajectory Smoothing. In our experimental setup, we strate-
gically differentiated the speeds for data collection and user interaction to optimize the model’s
performance across various scenarios.
Data Collection Speed: We pre-drew the user’s action trajectories and moved the ring with a

strong magnet along these paths. To ensure comprehensive data collection, the ring was moved
slowly along the path, pausing for approximately 1-2 seconds at each grid square. This deliberate
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Fig. 7. Trajectory Result on Smart Phone Platform

pacing was chosen to balance data accuracy. Moving the ring too swiftly (less than 1 second per
grid square) would risk collecting insufficient data points, potentially leading to gaps in the signal
that could diminish tracking precision. Conversely, overly lengthy pauses (more than 2 seconds)
could cause the model to overfit to these slow movements, thereby reducing its ability to generalize
to quicker, more natural user interactions.

User Interaction Speed: During actual user interaction, the model is designed to respond to more
rapid movements, with users typically completing a stroke every second. This faster interaction
speed challenges the model to adapt to the natural pace of user activities without compromising
accuracy or responsiveness. These distinct speed settings are crucial for training the model un-
der controlled, slow-motion conditions to capture detailed data, while also ensuring it performs
effectively at the practical speed of real-world usage.

We conducted experiments on commonly used letters and numbers. However, to demonstrate the
model’s performance on straight and curved models, we selected letters ’N’ and ’G’ for presentation.
As shown in Figure 7, the red dashed line represents the ground truth, while the solid line in
deep blue represents the results recognized by the model. The two images depict the trajectories
before and after being processed by the trajectory smoothing algorithm, aiming to showcase the
effectiveness of the trajectory smoothing algorithm. We calculated the distance between each
recognized point and the true coordinates as the error and determined the error interval and
average error of the entire image recognition result.
For the letter ’N’, its tracking error was 4.7mm, which decreased to 3.8mm after trajectory

smoothing. For the letter ’G’, its tracking error was 6.3mm, which reduced to 4.9mm after trajectory
smoothing. Although the directly recognized results already resembled the original images, the
error significantly decreased after trajectory smoothing, making the trajectories easier to recognize.

5.3 Tracking on Smart Watch Platform
5.3.1 Set Up. Due to the inconvenience of using the back of the hand for experiments, we also
prepared an A4 paper with a grid pattern to indicate position coordinates. The grid size is 8 cm×8 cm,
which aligns with the average size of the back of the hand writing area. Similarly, we use the
top-left vertex of the grid as the origin to calculate the coordinates of each grid square and collect
data, establishing the basic relationship between magnetic data and coordinates. Subsequent tuning
and optimization will also be based on this. Afterward, we will follow the same procedure as with
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Fig. 8. Trajectory Result on Smart Watch Platform
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Fig. 9. The Effectiveness of Model Distillation

the mobile platform, tracing the path on the paper’s grid as ground truth, then moving the ring
along the path at the same time intervals.

5.3.2 Impact of Model Distillation. We trained both the teacher model and the student model with
the same data, following an identical trajectory smoothing process. We first conducted experiments
on the 26 English letters. Following the previous steps, we sequentially input the same collected
experimental data into both the teacher model and the student model. The trajectory results
are shown in Figure 8. As shown in Figure 9, the error of the student model slightly increased.
Specifically, the average error for trajectory N increased from 3.8mm to 4.9mm, and for trajectory
G, the average error increased from 5.1mm to 6.3mm. Although the errors increased, the overall
trend remained unchanged, and the degree of trajectory restoration was similar. Additionally, the
increased errors were within an acceptable range.

5.4 Comparative Analysis with Baseline Methods
We conduct a comparative analysis of our system against similar research employing analogous
tracking configurations. TRing is selected as a baseline due to its use of a permanent magnet and
a single magnetometer for calibration, which aligns with key elements of our system. Although
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Fig. 11. Impact of Preprocessing Modules

TRing’s configuration features a moving magnetometer and a stationary magnet, contrasting with
the stationary magnetometer and moving magnet in our setup, the application context remains
highly comparable. Moreover, the data processing techniques utilized in TRing provide a robust
foundation for evaluating the performance of our method, making it an appropriate benchmark for
this study.

To evaluate the performance of our system, we processed the same set of 10 data samples using
both our proposed method and the method outlined in TRing. The resulting positioning errors
for these samples are depicted in Figure 10, where we present the average error for each method.
On average, our approach achieved approximately 2 mm higher precision compared to TRing’s
method, demonstrating a notable improvement in accuracy.

5.5 The Impact of Different Preprocessing Modules
To evaluate the impact of preprocessing modules on positioning accuracy, we conducted ablation
tests. These tests quantify the contribution of each preprocessing step by systematically removing
it. The following modules were tested:

Noise Reduction Module: We removed the Kalman filter and directly used raw magnetic field
data for positioning. By comparing the positioning accuracy with and without the noise reduction
processing, we assess the effect of the noise reduction module on positioning accuracy.
Elimination of Static Magnetic Field in Environmental Magnetic Fields: In this test, we

removed the static magnetic field elimination processing and used unadjusted magnetic field data
directly for positioning. We compared the positioning accuracy before and after removing the static
magnetic field processing to evaluate its necessity.

Elimination of Soft Magnetic Effects in Environmental Magnetic Fields: We removed the
soft magnetic effect elimination processing and used unprocessed magnetic field data directly for
positioning. By comparing the positioning accuracy before and after removing the soft magnetic
effect processing, we assess the impact of this step on positioning accuracy.
The results of these ablation tests are illustrated in the Figure 11. These figures clearly show

the impact of each preprocessing module on positioning accuracy. Notably, removing the Noise
Reduction Module resulted in the largest increase in error, with the error rising by approximately 5
mm—double the original error—which made it impossible to recognize the image as a discernible
shape. Similarly, the removal of the Environmental Magnetic Field Correction and Soft Magnetic
Effect Removal modules both caused the error to increase by about 3 mm, representing a 75%
increase in error. This is also an unacceptable level of degradation, further underscoring the critical
role each preprocessing stage plays in ensuring accurate positioning.
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Table 3. Comparison of Device Models, Processors, and Battery Capacity

Device Model Processor Battery Capacity (mAh)

vivo X100 pro MediaTek Dimensity 9300 5400
IQOO neo 3 Snapdragon 865 4500
HUAWEI MATE 20 Kirin 980 4000
OPPO Realme GT neo5 Snapdragon 8+ Gen1 (underclocked) 4600
IQOO 11 Snapdragon 8 Gen2 5000

5.6 Impact of Magnetic Interference
The magnetic interference in the surrounding environment is a crucial issue that must be addressed.
We conducted experiments in multiple environments. Initially, we conducted experiments in an
empty classroom using a wooden deskwithout ferrous supports as the support platform, considering
it as ground truth. Following this, we tested in various scenarios such as a living room equipped with
various electronic furniture, a laboratory with numerous computers and monitors, and additionally,
we simulated usage scenarios by placing an active MR device next to the experimental platform. In
order to demonstrate the effectiveness of our soft magnetic correction algorithm, we placed a strong
magnet on the table, considering it as a strong magnetic environment. During data processing, we
trained the models with both the data corrected by the soft magnetic correction algorithm and the
uncorrected data.
As shown in the Figure 12, the Mring program achieved relatively excellent results in several

everyday environments: the laboratory, the living room, and the MR usage environment. Their
average errors were 3.51mm, 4.77mm, and 4.91mm, respectively. Compared to the error of 2.81mm
in the clean room, the increase in errors in the other environments is within an acceptable range.
For performance in a strong magnetic environment, we conducted recognition using data that
had not undergone soft magnetic correction training and compared it with the recognition results
using data that had undergone soft magnetic correction. As shown in the Figure 13, the final results
showed a reduction in error of nearly 3mm. This is sufficient to demonstrate the reliability of the
soft magnetic correction function.

5.7 Energy Overhead
To evaluate the power consumption and task execution time of the Mring system across different
devices, we conducted controlled experiments, ensuring consistent testing conditions.
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Since the devices have different battery capacities, we calculated the battery drop as a percentage
of the total capacity to standardize comparisons. The battery percentage drop during each test was
converted into mAh, allowing for a fair comparison of power consumption across devices. To further
clarify the experimental settings and single out Mring’s impact on energy consumption, during the
entire data collection process of our experiment, we took strict measures to ensure that there were
absolutely no other programs running in the background of the experimental device. Only the data
collection program dedicated to our study was in operation. Additionally, to accurately calculate
the power consumption solely attributable to Mring, we collected the power consumption of the
device with the screen on but without running any programs within the same time range as the
data collection for Mring. Then, we subtracted this value from the power consumption recorded
during the Mring experiment to precisely obtain the power consumption data of our program.
A table summarizing the key specifications for each device, including processor type, battery

capacity, and test conditions, is provided in Table 3.
After performing calibration and drawing operations for 1 minute, the actual power consumption

across different devices varied notably. Specifically, the vivo X100 Pro consumed 2% of its battery,
which is equivalent to 108mAh. The IQOO neo 3 consumed 10% of its battery, which is equivalent
to 450mAh. The HUAWEI MATE 20 consumed 12% of its battery, which is equivalent to 480mAh.
The OPPO Realme GT neo5 consumed 8% of its battery, which is equivalent to 368mAh. The
IQOO 11 consumed 4% of its battery, which is equivalent to 200mAh. These results demonstrate
a clear relationship between the power consumption and the processing power of each device.
Smartphones with more advanced processors, such as the MediaTek Dimensity 9300 (vivo X100 pro)
and Snapdragon 8 Gen2 (IQOO 11), showed significantly lower power consumption, suggesting
that these devices are more efficient in handling the operations required by the Mring system. On
the other hand, devices with older or less efficient processors, such as the Kirin 980 (HUAWEI
MATE 20) and Snapdragon 865 (IQOO neo 3), exhibited higher power usage.

Despite these variations, the overall power consumption of our system remains within acceptable
limits across all devices. This indicates that the Mring system is optimized for a range of hardware
configurations, maintaining efficiency and stability, even on devices with less advanced processors.
These findings further underscore the adaptability and practicality of the system, ensuring a balance
between computational performance and energy efficiency.

Specifically, we measured and compared the error of each device when using the Mring system.
As shown in the Figure 14, the experimental results showed that the average error for the vivo
X100 pro was 3.55 mm, for the IQOO neo 3 it was 5.12 mm, for the HUAWEI MATE 20 it was 5.22
mm, for the OPPO Realme GT neo5 it was 4.96 mm, and for the IQOO 11 it was 3.56 mm. These
data indicate that despite differences in hardware configurations and magnetic sensor performance
among different devices, the Mring system can still maintain high accuracy and reliability across
all devices.

The experimental results demonstrate that theMring system has good device adaptability, capable
of achieving stable non-contact input functionality on a variety of smartphone models. This further
proves the universality and practicality of our proposed magnetic signal sensing technology.

5.8 User Study
To comprehensively evaluate the performance of the Mring system, we conducted detailed exper-
iments involving 25 volunteers. We recorded the time taken for calibrating data, the trajectory
reconstruction error, and the users’ preference for the system. These 25 volunteers first conducted
tests on a smartphone platform, followed by tests on a smartwatch platform. During the exper-
iments, the volunteers were asked to perform parameter calibration according to a predefined
calibration method, then perform trajectory recognition, and finally record the results.
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The experimental results are shown in Figure 15: the calibration time on the smartphone platform
was significantly less than the calibration time on the smartwatch platform. This difference is
mainly due to the different number of vertices that need to be determined. On the smartphone
platform, the larger screen allows users to complete the calibration process more quickly; on the
smartwatch platform, the smaller screen requires more time to accurately determine the calibration
vertices.

Regarding trajectory error, as shown in the Figure 16, the experimental data showed that the
errors on the smartphone and smartwatch platforms were similar, with the smartwatch platform
having a slightly larger error than the smartphone platform. This is likely due to the limited display
and operation space on the smartwatch platform, causing a slight decrease in accuracy during
trajectory recognition.
Finally, we conducted a survey to assess the users’ acceptance of the Mring system. As shown

in Figure 17, the survey results showed that 23% of the users were very satisfied with the system
(very prefer), 41% of the users were satisfied (prefer), and the remaining users were neutral. These
feedback results indicate that, despite some platform differences, the majority of users had a positive
attitude towards the overall performance and user experience of the Mring system.
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6 LIMITATIONS
One major limitation of our magnetic field sensing and localization system is its sensitivity to
continuous and severe variations in the background magnetic field. In real-world environments,
particularly urban or industrial settings, the magnetic field can be highly dynamic due to various
sources such as electrical equipment, vehicles, and magnetic structural elements. These fluctuations
introduce substantial noise, interfering with the precise detection of magnetic field changes caused
by the target. Additionally, our system is susceptible to interference from other targets. If multiple
users are using the system simultaneously, significant disturbances can occur. Unlike modulated
electromagnetic signals, the rawmagnetic signals cannot distinguish between the actions of different
users. Currently, we are unable to distinguish the movements of multiple magnets.

7 CONCLUSION
In this study, we introduced Mring, a novel non-contact extended input method based on magnetic
signals for MR and AR devices. By leveraging low-cost permanent magnets and existing magne-
tometer sensors in wearable devices, we developed a system capable of achieving high-precision
localization and trajectory recognition, even outside the direct line of sight. Our research tackled
significant challenges, including electromagnetic interference and user/scene adaptation. We em-
ployed noise filtering and a magnetic dipole model to stabilize and process magnetic signals, and
trained neural networks to handle soft magnetic offsets. Our trajectory reconstruction accuracy is
approximately 5.23mm. On the smartphone platform, the average error can be reduced to around
4.55mm, while on the smartwatch platform, it is approximately 7.02mm. The performance of our
system was validated through experiments in various environments, demonstrating its robustness
and adaptability.
Moreover, we addressed the diversity of scenarios by developing a comprehensive calibration

approach and optimizing computational costs for smartwatches using model distillation techniques.
Our innovative input method enhances user interaction with MR and AR technologies, providing a
reliable and efficient solution for diverse application scenarios.

In conclusion, Mring represents a significant advancement in the field of MR and AR interactions,
offering a practical and effective solution for non-contact input based on magnetic signals. Future
work will focus on further improving the system’s adaptability and exploring additional applications
of this technology in different domains.
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