Problem Set 2

1 Regularized Normal Equation for Linear Re-
gression

Given a data set {z(), y®},_; .. ,, with () € R" and y? € R, the general
form of regularized linear regression is as follows
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Derive the normal equation.

2 Gaussian Discriminant Analysis Model

Given m training data {z(,y®},_; . .., assume that y ~ Bernoulli(v), z |
y=0~N(po,2), z|y=1~MN(u,X). Hence, we have
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The log-likelihood function is
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Solve 1, o, p1 and ¥ by maximizing £(1, po, p1, ).
Hint: Vxtr(AX!B) = —(X'BAX )T V4|A| = |[A|(A~H)T

3 MLE for Naive Bayes

Consider the following definition of MLE problem for multinomials. The
input to the problem is a finite set ), and a weight ¢, > 0 for each y € ).



The output from the problem is the distribution p* that solves the following
maximization problem.
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(i) Prove that, the vector p* has components

for Vy € ), where N = Zyey ¢y. (Hint: Use the theory of Lagrange
multiplier)

(ii) Using the above consequence, prove that, the maximum-likelihood esti-
mates for Naive Bayes model are as follows
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