Problem Set 2

1 Regularized Normal Equation for Linear Regression

Given a data set $\left\{x^{(i)}, y^{(i)}\right\}_{i=1, \cdots, m}$ with $x^{(i)} \in \mathbb{R}^{n}$ and $y^{(i)} \in \mathbb{R}$, the general form of regularized linear regression is as follows

$$
\begin{equation*}
\min _{\theta} \frac{1}{2 m}\left[\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\lambda \sum_{j=1}^{n} \theta_{j}^{2}\right] \tag{1}
\end{equation*}
$$

Derive the normal equation.

2 Gaussian Discriminant Analysis Model

Given m training data $\left\{x^{(i)}, y^{(i)}\right\}_{i=1, \cdots, m}$, assume that $y \sim \operatorname{Bernoulli}(\psi), x \mid$ $y=0 \sim \mathcal{N}\left(\mu_{0}, \Sigma\right), x \mid y=1 \sim \mathcal{N}\left(\mu_{1}, \Sigma\right)$. Hence, we have

- $p(y)=\psi^{y}(1-\psi)^{1-y}$
- $p(x \mid y=0)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{0}\right)^{T} \Sigma^{-1}\left(x-\mu_{0}\right)\right)$
- $p(x \mid y=1)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{1}\right)^{T} \Sigma^{-1}\left(x-\mu_{1}\right)\right)$

The log-likelihood function is

$$
\begin{aligned}
\ell\left(\psi, \mu_{0}, \mu_{1}, \Sigma\right) & =\log \prod_{i=1}^{m} p\left(x^{(i)}, y^{(i)} ; \psi, \mu_{0}, \mu_{1}, \Sigma\right) \\
& =\log \prod_{i=1}^{m} p\left(x^{(i)} \mid y^{(i)} ; \psi, \mu_{0}, \mu_{1}, \Sigma\right) p\left(y^{(i)} ; \psi\right)
\end{aligned}
$$

Solve ψ, μ_{0}, μ_{1} and Σ by maximizing $\ell\left(\psi, \mu_{0}, \mu_{1}, \Sigma\right)$.
Hint: $\nabla_{X} \operatorname{tr}\left(A X^{-1} B\right)=-\left(X^{-1} B A X^{-1}\right)^{T}, \nabla_{A}|A|=|A|\left(A^{-1}\right)^{T}$

3 MLE for Naive Bayes

Consider the following definition of MLE problem for multinomials. The input to the problem is a finite set \mathcal{Y}, and a weight $c_{y} \geq 0$ for each $y \in \mathcal{Y}$.

The output from the problem is the distribution p^{*} that solves the following maximization problem.

$$
p^{*}=\arg \max _{p \in \mathcal{P} \mathcal{y}} \sum_{y \in \mathcal{Y}} c_{y} \log p_{y}
$$

(i) Prove that, the vector p^{*} has components

$$
p_{y}^{*}=\frac{c_{y}}{N}
$$

for $\forall y \in \mathcal{Y}$, where $N=\sum_{y \in \mathcal{Y}} c_{y}$. (Hint: Use the theory of Lagrange multiplier)
(ii) Using the above consequence, prove that, the maximum-likelihood estimates for Naive Bayes model are as follows

$$
p(y)=\frac{\sum_{i=1}^{m} \mathbf{1}\left(y^{(i)}=y\right)}{m}
$$

and

$$
p_{j}(x \mid y)=\frac{\sum_{i=1}^{m} \mathbf{1}\left(y^{(i)}=y \wedge x_{j}^{(i)}=x\right)}{\sum_{i=1}^{m} \mathbf{1}\left(y^{(i)}=y\right)}
$$

