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Why Learning Theory?

How can we tell if your learning algorithm will do a good job in future
(test time)?

Experimental results
Theoretical analysis

Why theory?

Can only run a limited number of experiments..
Experiments rarely tell us what will go wrong

Using learning theory, we can make formal statements/give guarantees
on

Expected performance (“generalization”) of a learning algorithm on test
data
Number of examples required to attain a certain level of test accuracy
Hardness of learning problems in general
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Bias, Variance and Model Complexity

Bias is a learner’s tendency to consistently learn the same wrong thing

The bias is error from erroneous assumptions in the learning algorithm
High bias can cause an algorithm to miss the relevant relations between
features and target outputs (underfitting)

Variance is the tendency to learn random things irrespective of the real
signal

The variance is error from sensitivity to small fluctuations in the training
set
High variance can cause an algorithm to model the random noise in the
training data, rather than the intended outputs (overfitting)
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Bias, Variance and Model Complexity (Contd.)

A target variable Y , a vector of inputs X and a prediction model f̂ (X )
which has been estimated from a training set D
The loss function for measuring errors between Y and f̂ (X )

L(Y , f̂ (X )) =

{
(Y − f̂ (X ))2, squared error

|Y − f̂ (X )|, absolute error
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Bias, Variance and Model Complexity (Contd.)

Test error (or generalization error)

ErrD = E[L(Y , f̂ (X )) | D]

Expected prediction (or test) error

Err = E[L(Y , f̂ (X ))] = E[ErrD]

which averages over everything that is random, including the random-
ness in the training set that produced f̂

Training error

err =
1

m

m∑
i=1

L(yi , f̂ (xi ))
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Bias, Variance and Model Complexity (Contd.)

Behavior of test sample and training sample error as the model complexity
is varied. The light blue curves show the training error Err, while the light
red curves show the conditional test error ErrD for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the
expected test error Err and the expected training error E[Err].
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Bias, Variance and Model Complexity (Contd.)

Training error is not a good estimate of the test error!
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Bias, Variance and Model Complexity (Contd.)
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Bias, Variance and Model Complexity (Contd.)

Simple model have high bias and small variance, complex models have
small bias and high variance

If you modified a model to reduce its bias (e.g., by increasing the
model’s complexity), you are likely to increase its variance, and vice-
versa (if, however, both increase then you might be doing it wrong!)
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Bias, Variance and Model Complexity (Contd.)

The bad performance (low accuracy on test data) could be due to either
high bias (underfitting) or high variance (overfitting)

Looking at the training and test error can tell which of the two is the
case

High bias: Both training and test error are large

High variance: Small training error, large test error (and huge gap)
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Bias, Variance and Model Complexity (Contd.)

Model section: Estimating the performance of different models in
order to choose the best one

Model assessment: Having chosen a final model, estimating its pre-
diction error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems
is to randomly divide the dataset into three parts: a training set, a
validation set, and a test set.

The training set is used to fit the models
The validation set is used to estimate prediction error for model selection
The test set is used for assessment of the generalization error of the final
chosen model

A typical split might be 50% for training, and 25% each for validation
and testing
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Bias-Variance Decomposition

For a model Y = f (X ) + ε with E(ε) = 0 and Var(ε) = σ2ε

Err(x0) = E[(y0 − f̂ (x0))2]

= E[y20 − 2y0f̂ (x0) + f̂ 2(x0)]

= E[y20 ] + E[f̂ 2(x0)]− E[2y0f̂ (x0)]

= Var[y0] + E2[y0] + Var[f̂ (x0)] + E2[f̂ (x0)]− E[2y0f̂ (x0)]

= Var[f (x0) + ε] + E2[f (x0) + ε] + Var[f̂ (x0)]

+E2[f̂ (x0)]− E[2(f (x0) + ε)f̂ (x0)]

= σ2ε + f 2(x0) + Var[f̂ (x0)] + E2[f̂ (x0)]− 2f (x0)E[f̂ (x0)]

= σ2ε + (f (x0)− E [f̂ (x0)])2 + Var[f̂ (x0)]

= Irreducible Error + Bias2 + Variance
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Bias-Variance Decomposition (Contd.)

For a model Y = f (X ) + ε with E(ε) = 0 and Var(ε) = σ2ε

Err(x0) = E[(Y − f̂ (x0))2]

= σ2ε + (f (x0)− E [f̂ (x0)])2 + Var[f̂ (x0)]

= Irreducible Error + Bias2 + Variance

The first term is the variance of the target around its true mean f (x0),
and cannot be avoided no matter how well we estimate f (x0), unless
σ2
ε = 0

The second term is the squared bias, i.e., the amount by which the
average of our estimate differs from the true mean
The last term is the variance, i.e., the expected squared deviation of
f̂ (x0) around its mean
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Bias-Variance Decomposition (Contd.)

For k-nearest neighbor regression,

Err(x0) = E[(Y − f̂k(x0))2]

= σ2ε +

[
f (x0)− 1

k

k∑
`=1

f (x(`))

]2
+
σ2ε
k
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Bias-Variance Decomposition (Contd.)

For linear regression model Y = Xθ + ε,

Bias(x0) = f (x0)− E[f̂ (x0)]

= xT0 θ − E[xT0 θ̂]

= xT0 θ − E[xT0 (XTX )−1XTY ]

= xT0 θ − E[xT0 (XTX )−1XT (Xθ + ε)]

= xT0 θ − E[xT0 (XTX )−1XTXθ + xT0 (XTX )−1XT ε]

= xT0 θ − E[xT0 θ + xT0 (XTX )−1XT ε]

= E[xT0 θ − xT0 θ + xT0 (XTX )−1XT ε]

= 0
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Bias-Variance Decomposition (Contd.)

For linear regression model Y = Xθ + ε,

Var(f̂ (x0)) = E[(f (x0)− E[f̂ (x0))2]

= E[(xT0 (XTX )−1XTY − XT
0 θ)2]

= E[(xT0 (XTX )−1XT (Xθ + ε)− XT
0 θ)2]

= E[(xT0 (XTX )−1XT ε)2]

= E[(xT0 (XTX )−1XT ε)(xT0 (XTX )−1XT ε)T ]

= E[xT0 (XTX )−1XT εεT (xT0 (XTX )−1XT )T ]

= xT0 (XTX )−1XTE[εεT ](xT0 (XTX )−1XT )T

= xT0 (XTX )−1XTσ2ε I (x
T
0 (XTX )−1XT )T

= σ2ε x
T
0 (XTX )−1XT (xT0 (XTX )−1XT )T

= σ2ε x
T
0 (XTX )−1x0

≈ σ2ε
n

m
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Preliminaries

The union bound
Assume A1,A2, · · · ,Ak be k different events (that may not be inde-
pendent),

p(A1

⋃
A2 · · ·

⋃
Ak) ≤ p(A1) + · · ·+ p(Ak)

Hoeffding inequality (Chernoff bound)
Let Z1, · · · ,Zm be m independent and identically distributed (iid) ran-
dom variables drawn from a Bernoulli(φ) distribution (i.e., p(Zi = 1) =
φ and p(Zi = 0) = 1 − φ). Let φ̂ = 1

m

∑m
i=1 Zi be the mean of these

random variables, and let any γ > 0 be fixed. Then

p(|φ− φ̂| > γ) ≤ 2 exp(−2γ2m)
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Hypothesis Class

A hypothesis class H: a set of all classifiers considered by a learning
algorithm

A training set S = {(x (i), y (i))}i=1,··· ,m with y (i) ∈ {0, 1} are drawn
i.i.d. from some probability distribution D
The learning algorithm, given training data, learns a hypothesis h ∈ H
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Training and Generalization Error

The training error (or empirical risk, empirical error) is

Err(h) =
1

m

m∑
i=1

1{h(x (i)) 6= y (i)}

i.e., the fraction of the misclassified training examples

The generalization is

ErrD(h) = P(x ,y)∼D(h(x) 6= y)

i.e., the probability that, if we now draw a new example (x , y) from
the distribution D, h will misclassify it
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Empirical Risk Minimization

Empirical Risk Minimization (ERM)

Consider a linear classification hθ(x) = 1(θT x ≥ 0)
Minimize the training error

θ∗ = arg min
θ

Err(hθ)

Optimal hypothesis h∗ = hθ∗

ERM can also be thought of a minimization over the class

h∗ = arg min
h∈H

Err(h)
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Finite H

A finite hypothesis class H = {h1, · · · , hk}
h∗ ∈ H denotes the optimal hypothesis function with the training error
minimized by ERM

Does there exist a guarantee on the generalization error of ĥ?

ErrD(h) is a reliable estimate of Err(h) for ∀h
This implies an upper-bound on the generalization error of h∗
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Finite H (Contd.)

Assume (x , y) ∼ D
For hi ∈ H, define Bernoulli random variables

Z = 1(hi (x) 6= y)

Zj = 1{hi (x (j)) 6= y (j)}

The generalization error

ErrD(hi ) = E[Z ] = E[Zj ]

The training error

Err(hi ) =
1

m

m∑
j=1

Zj
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Finite H (Contd.)

Assume (x , y) ∼ D
For hi ∈ H, define Bernoulli random variables

Z = 1(hi (x) 6= y)

Zj = 1{hi (x (j)) 6= y (j)}

The generalization error ErrD(hi ) = E[Z ] = E[Zj ]

The training error Err(hi ) = 1
m

∑m
j=1 Zj

By applying Hoeffding inequality, we have

P(|Err(hi )− ErrD(hi )| > γ) ≤ 2 exp(−2γ2m)

For a particular hi , training error will be close to generalization error
with high probability, assuming m is large
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Finite H (Contd.)

Let Ai denote the event that |Err(hi )− ErrD(hi )| > γ, then

P(Ai ) ≤ 2 exp(−2γ2m)

By using the union bound, we have

P(|Err(hi )− ErrD(hi )| > γ)

= P(A1

⋃
· · ·
⋃

Ak) ≤
k∑

i=1

P(Ai )

≤
k∑

i=1

2 exp(−2γ2m) = 2k exp(−2γ2m)
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Finite H (Contd.)

Then, we have the following result

P(¬∃h ∈ H : |Err(h)− ErrD(h)| > γ)

= P(∀h ∈ H : |Err(h)− ErrD(h)| > γ)

≥ 1− 2k exp(−2γ2m)

With probability at least 1− 2k exp(−2γ2m), we have

|Err(h)− ErrD(h)| ≤ γ

for ∀h ∈ H
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Finite H (Contd.)

Given γ and δ > 0, how large should m be such that we can guarantee

|Err(h)− ErrD(h)| ≤ γ

with probability ≥ 1− δ?

Solution

1− 2k exp(−2γ2m) ≥ 1− δ ⇒ m ≥ 1

2γ2
log

2k

δ

The training set size m that a certain method or algorithm requires in
order to achieve a certain level of performance is so-called the algo-
rithm’s sample complexity

The number of training examples needed to make this guarantee is only
logarithmic in the number of hypotheses in H (i.e., k)
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Finite H (Contd.)

Fixing m and δ, solving for γ gives

1− 2k exp(−2γ2m) ≥ 1− δ ⇒ |Err(h)− ErrD(h)| ≤
√

1

2m
log

2k

δ

Given m and δ > 0, with probability at least 1− δ,

|Err(h)− ErrD(h)| ≤
√

1

2m
log

2k

δ
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Finite H (Contd.)

Assume ĥ = arg minh∈H ErrD(h)

ErrD(h∗) ≤ Err(h∗) + γ

≤ Err(ĥ) + γ

≤ ErrD(ĥ) + 2γ

If uniform convergence occurs, then the generalization error of h∗ is at
most 2γ worse than the best possible hypothesis in H
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Finite H (Contd.)

Theorem

Let |H| = k and let any m and δ be fixed. With probability at least 1− δ,
we have

ErrD(h∗) ≤
(

min
h∈H

ErrD(h)

)
+ 2

√
1

2m
log

2k

δ

If we take a larger hypothesis set H′ such that H ⊆ H′
the first term is decreased (the bias is decreased)
the second term is increased (the variance is increased)
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Finite H (Contd.)

Corollary

Let |H| = k and let any δ, γ be fixed. For

ErrD(h∗) ≤ min
h∈H

ErrD(h) + 2γ

to hold with probability at least 1− δ, it suffices that

m ≥ 1

2γ2
log

2k

δ

= O(
1

γ2
log

k

δ
)
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Infinite H

What happens when the hypothesis class size |H| is infinite?

Example: The set of all linear classifiers

The above bound does not apply (it just becomes trivial)

We need some other way of measuring the size of H
One way: use the complexity H as a measure of its size
Vapnik-Chervonenkis dimension (VC dimension)
VC dimension: a measure of the complexity of a hypothesis class
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Shattering

A set of points (in a given configuration) is shattered by a hypothesis
class H, if, no mater how the points are labeled, there exists some
h ∈ H that can separate the points

Figure: 3 points in 2D (locations fixed, only labeling varies), H: set of linear
classifier
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Vapnik-Chervonenkis (VC) Dimension

Definition (VC Dimension)

Given a hypothesis class H, we then define its Vapnik-Chervonenkis dimen-
sion, VC(H), to be the size of the largest set that is shattered by H

Consider the following shattering game between us and an adversary

We choose d points in an input space, positioned however we want
Adversary labels these d points
We define a hypothesis h ∈ H that separates the points
Note: Shattering just one configuration of d points is enough to win

The VC dimension of H, in that input space, is the maximum d we
can choose so that we always succeed in the game
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VC Dimension (Contd.)

Even when VC(H) = 3, there exist sets of size 3 that cannot be clas-
sified correctly

In order words, under the definition of the VC dimension, in order to
prove that VC(H) is at least d , we need to show only that there’s at
least one set of size d that H can shatter.
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VC Dimension (Contd.)

A measure of the “power” or the “complexity” of the hypothesis space

Higher VC dimension implies a more “expressive” hypothesis space)

Shattering: A set of N points is shattered if there exists a hypothesis
that is consistent with every classification of the N points

VC Dimension: The maximum number of data points that can be
“shattered”

If VC Dimension = d, then:

There exists a set of d points that can be shattered
There does not exist a set of d + 1 points that can be shattered
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VC Dimension (Contd.)

Theorem

Let H be given, and let d = VC(H). Then, with probability at least 1− δ,
we have that for all h ∈ H

|ErrD(h)− Err(h)| ≤ O

(√
d

m
log

m

d
+

1

m
log

1

δ

)

and thus

ErrD(h∗) ≤ Err(ĥ) + O

(√
d

m
log

m

d
+

1

m
log

1

δ

)

Feng Li (SDU) Learning Theory January 5, 2022 37 / 44



VC Dimension (Contd.)

Recall for finite hypothesis space

ErrD(h∗) ≤
(

min
h∈H

ErrD(h)

)
+ 2

√
1

2m
log

2k

δ

VC(H) is like a substitute for k = |H|
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Select The Right Model

Given a set of models M = {M1,M2, ...,MR}, choose the model that
is expected to do the best on the test data

M may consist of:
Same learning model with different complexities or hyperparameters

Nonlinear Regression: Polynomials with different degrees
K -Nearest Neighbors: Different choices of K
Decision Trees: Different choices of the number of levels/leaves
SVM: Different choices of the misclassification penalty parameter C
Regularized Models: Different choices of the regularization parameter
Kernel based Methods: Different choices of kernels
... and almost any learning problem

Different learning models (e.g., SVM, KNN, DT, etc.)
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Hold-Out Cross Validation (Simple Cross Validation)

Given a training set S , do the following

Randomly split S into Strain (say, 70% of the data) and Scv (the remaining
30% called the hold-out cross validation set)
Train each model Mi on Strain only, to get some hypothesis hi .
Select and output the hypothesis hi that had the smallest error ErrScv (hi )
on the hold-out cross validation set

Option: After selecting M∗ ∈ M such that h∗ = arg mini ErrScv (hi ),
retrain M∗ on the entire training set S

Weakness: It seems we are trying to select the best model based on
only part of the training set
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k-Fold Cross Validation

Randomly split S into k disjoint subsets S1, · · · , Sk , each of which
involves m/k training examples

For each model Mi , we evaluate it as follows:

For j = 1, · · · , k, train the model Mi on S1
⋃
· · ·
⋃
Sj−1

⋃
Sj+1

⋃
· · ·
⋃
Sk

(i.e., train on all the data except Sj) to get some hypothesis hij , and then
test the hypothesis hij on Sj , to get ErrSj (hij).
The estimated generalization error of model Mi is then calculated as the
average of the ErrSj (hij)’s (averaged over j).

Pick the model Mi with the lowest estimated generalization error, and
retrain that model on the entire training set S

Feng Li (SDU) Learning Theory January 5, 2022 41 / 44



Feature Selection

Given n features resulting in 2n possible feature subsets, which one is
the optimal?

Forward search:

Initialize F = ∅
Until |F| = ε or |F| = n, repeat

(a) For i = 1, · · · , n, if i /∈ F , let Fi = F
⋃
{i}, and use cross validation

to evaluate Fi

(b) Set F to be the best feature subset found in (a)

Backward search: Start with F = {1, · · · , n}, and repeatedly deletes
features one at a time until |F| = ε

The above two methods are so-called wrapper model, which is a pro-
cedure that “wraps” around your learning algorithm

Wrapper feature selection algorithms usually have considerable compu-
tational cost

O(n2) calls to the learning algorithm
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Filter Feature Selection (Contd.)

Heuristic but computationally efficient

Basic idea: Compute a score S(i) to measure how informative each
feature xi is about the class labels y ; then, select the k features with
the largest scores S(i)

Mutual information MI (xi , y) between xi and y

MI (xi , y) =
∑

xi∈{0,1}

∑
y∈{0,1}

p(xi , y) log
p(xi , y)

p(xi )p(y)

with p(xi , y), p(xi ) and p(y) estimated according their empirical dis-
tributions on the training set

How to choose a right k?

Use cross validation
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Thanks!

Q & A
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