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Dimensionality Reduction

Usually considered an unsupervised learning method

Used for learning the low-dimensional structures in the data

Also useful for “feature learning” or “representation learning” (learning
a better, often smaller-dimensional, representation of the data), e.g.,

Documents using topic vectors instead of bag-of-words vectors
Images using their constituent parts (faces - eigenfaces)

Can be used for speeding up learning algorithms
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Dimensionality Reduction (Contd.)

Exponentially large # of examples required to “fill up” high-dim spaces

Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generaliza-
tion

Dimensionality reduction is a way to beat the curse of dimensionality
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Linear Dimensionality Reduction

A projection matrix U = [u1u2 · · · uK ] of size D × K defines K linear
projection direction

Use U to transform x (i) ∈ RD into z(i) ∈ RK

z(i) = UT x (i) = [uT1 x (i), uT2 x (i), · · · uTK x (i)]T is a K -dim projection

of x (i)

z (i) ∈ RK is also called low-dimensional “embeding” of x (i) ∈ RD
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Linear Dimensionality Reduction

X = [x (1) x (2) · · · x (N)] is D × N matrix deoting all the N data points

Z = [z(1) z(2) · · · z(N)] is K × N matrix denoting embeddings of the
data points

With this notation, the figure on previous slide can be re-drawn as

How do we learn the “best” projection matrix U?

What criteria should we optimize for when learning U

Principle Component Analysis (PCA) is an algorithm for doing this
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Principle Component Analysis (PCA)

PCA is a technique widely used for applications such as dimensionality
reduction, lossy data compression, feature extraction, and data visual-
ization
Two commonly used definitions

Learning projection directions that capture maximum variance in data
Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented
(and transforming the features such that new features become decor-
related)
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Variance Captured by Projections

Consider x (i) ∈ RD on a one-dim subspace defined by u1 ∈ RD (‖u1‖ =
1)

Projection of x (i) along a one-dim subspace

Mean of projections of all the data (µ = 1
N

∑N
i=1 x

(i))

1

N

N∑
i=1

uT1 x (i) = uT1
1

N

N∑
i=1

x (i) = uT1 µ
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Variance Captured by Projections

Variance of the projected data

1

N

N∑
i=1

(uT1 x (i) − uT1 µ)2 =
1

N

N∑
i=1

[uT1 (x (i) − µ)]2 = uT1 Su1

S is the D × D data covariance matrix

S =
1

N

N∑
i=1

(x (i) − µ)(x (i) − µ)T

Variance of the projected data (“spread” of the yellow points)

If data already centered at µ = 0, then S = 1
N

∑N
i=1 x

(i)(x (i))T
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Optimization Problem

We want u1 s.t. the variance of the projected data is maximized

max
u1

uT1 Su1

s.t. uT1 u1 = 1

The method of Lagrange multipliers

L(u1, λ1) = uT1 Su1 − λ1(uT1 u1 − 1)

where λ1 is a Lagrange multiplier
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Direction of Maximum Variance

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S ’s eigenvectors it is?

Note that since uT1 u1 = 1, the variance of projected data is

uT1 Su1 = λ1

Var. is maximized when u1 is the top eigenvector with largest eigen-
value

The top eigenvector u1 is also known as the first Principle Component
(PC)

Other directions can also be found likewise (with each being orthogonal
to all previous ones) using the eigendecomposition of S (this is PCA)
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Steps in Principle Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
i=1 x

(i) from each data
point)

Compute the covariance matrix

S =
1

N

N∑
i=1

x (i)x (i)T =
1

N
XXT

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {ul}l=1,··· ,K with eigenvalues {λl}l=1,··· ,K

The final K dim. projection of data is given by

Z = UTX

where U is D × K and Z is K × N
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PCA as Minimizing the Reconstruction Error

Assume complete orthonormal basis vector u1, u2, · · · , uD , each ul ∈
RD

We can represent each data point x (i) ∈ RD exactly using the new
basis

x (i) =
D∑
l=1

z
(i)
l ul

x
(i)
1

x
(i)
2
...

x
(i)
D

 =
[
u1 u2 · · · uD

]
∗


z

(i)
1

z
(i)
2
...

z
(i)
D


Denoting z(i) = [z

(i)
1 · · · z

(i)
D ]T , U = [u1 · · · uD ], and using UTU = I

x (i) = Uz(i) and z(i) = UT x (i)

Also note that each component of vector z(i) is z
(i)
l = uTl x

(i)
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Reconstruction of Data from Projections

Reconstruction of x (i) from z(i) will be exact if we use all D basis
vectors

Will be approximate if we only use K < D basis vectors:

x (i) ≈
K∑
l=1

z
(i)
l ul

Let’s use K = 1 basis vector. Then, the one-dim embedding of x (i) is

z(i) = uT1 x (i) (z(i) ∈ R)

We can now try to “reconstruct” x (i) from its embedding z(i) as follows

x̃ (i) = u1z
(i) = u1u

T
1 x (i)

Total error or “loss” in reconstructing all the data points

`(u1) =
N∑
i=1

‖x (i) − x̃ (i)‖2 =
N∑
i=1

‖x (i) − u1u
T
1 x (i)‖2
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Direction with Best Reconstruction

We want to find u1 that minimize the reconstruction error

`(u1) =
N∑
i=1

‖x (i)−u1u
T
1 x (i)‖2 =

N∑
i=1

(
−uT1 x (i)(x (i))Tu1 + (x (i))T x (i)

)
by using uT1 u1 = 1

Minimizing the error of reconstructing all the data points is equivalent
to

max
u1:‖u1‖2=1

uT1

(
N∑

n=1

x (i)(x (i))T

)
u1 = max

u1:‖u1‖2=1
uT1 Su1

where S is the covariance matrix of the data (which are assumed to be
centered)

It is the same objective that we had when we maximized the variance
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Revisiting Gaussian

Gaussian distribution with a single variable

N (x ;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x − µ)2

)
where µ is the mean and σ2 is the variance

n-dimensional multivariate Gaussian distribution

N (x ;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
where µ is the n-dimensional mean vector and Σ is the n×n-dimensional
covariance matrix
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Revisiting Gaussian (Contd.)

Central limit theorem

Subject to certain mild conditions, the sum of a set of random variables
has a distribution increasingly approaching Gaussian as the number of
the variables increases

Figure: Consider N random variables x1, x2, · · · , xN each of which has a uniform
distribution over [0, 1]. The distribution of their mean 1

N

∑N
i=1 xi tends to a Gaus-

sian as N →∞
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Revisiting Gaussian (Contd.)

The following Gaussian integrals have closed-form solutions∫
Rn

N (x ;µ,Σ)dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞
N (x ;µ,Σ)dx1 · · · dxn = 1∫

Rn

xiN (x ;µ,Σ)dx = µi , ∀i = 1, 2, · · · , n∫
Rn

(xi − µi )(xj − µj)N (x ;µ,Σ)dx = Σij
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Revisiting Gaussian (Contd.)

The functional dependence of the Gaussian on x is through the quadratic
form

∆2 = (x − µ)TΣ(x − µ)

where ∆ is called the Mahalanobis distance from x to µ

Σ is symmetric such that

All eigenvalues of Σ, i.e., λ1, λ2, · · · , λD , are real
Eigenvectors (i.e., u1, u2, uD) corresponding to distinct eigenvalues are
orthogonal
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Conditional Gaussian and Marginal Gaussian

An important property

If two sets of variables are jointly Gaussian, then the conditional distri-
bution of one set conditioned on the other is again Gaussian

µa|b = µa + ΣabΣ−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ−1
bb Σba

Similarly, the marginal distribution of either set is also Gaussian

E[xa] = µa

cov[xa] = Σaa
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Conditional Gaussian Distribution

x ∼ N (µ,Σ)

Partition x into two disjoint subsets xa and xb

x =

[
xa
xb

]
, µ =

[
µa
µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
Precision matrix

Λ := Σ−1 =

[
Λaa Λab

Λba Λbb

]
where ΛT

ab = Λba
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Conditional Gaussian Distribution (Contd.)

n-dimensional multivariate Gaussian distribution

N (x ;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
where µ is the n-dimensional mean vector and Σ is the n×n-dimensional
covariance matrix

If the conditional probability of xa conditioned on xb is a Gaussian

N (xa | xb;µa|b,Σa|b)

=
1

(2π)
n
2 |Σa|b|

1
2

exp

(
−1

2
(x − µa|b)TΣ−1

a|b(x − µa|b)

)
where µa|b is the na-dimensional conditional mean vector of xa and
Σa|b is the na × na-dimensional conditional covariance matrix
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Conditional Gaussian Distribution (Contd.)

A quadratic form of xa

−1

2
(x − µ)TΣ−1(x − µ)

= −1

2

([
xa
xb

]
−
[
µa
µb

])T [
Λaa Λab

Λba Λbb

]([
xa
xb

]
−
[
µa
µb

])
= −1

2
(xa − µa)TΛaa(xa − µa)− (xa − µa)TΛab(xb − µb)

−1

2
(xb − µb)TΛbb(xb − µb)

= −1

2
xTa Λaaxa + xTa (Λaaµa − Λab(xb − µb)) + const
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Conditional Gaussian Distribution (Contd.)

A quadratic form of xa

−1

2
(x − µ)TΣ−1(x − µ)

= −1

2
xTa Λaaxa+xTa (Λaaµa − Λab(xb − µb)) + const

Referring to

−1

2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x+xTΣ−1µ+ const

The covariance of p(xa | xb) is given by

Σa|b = Λ−1
aa
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Conditional Gaussian Distribution (Contd.)

A quadratic form of xa

−1

2
(x − µ)TΣ−1(x − µ)

= −1

2
xTa Λaaxa+xTa (Λaaµa − Λab(xb − µb)) + const

Referring to

−1

2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x+xTΣ−1µ+ const

The mean of p(xa | xb) is given by

µa|b = Σa|b(Λaaµa − Λab(xb − µb)) = µa − Λ−1
aa Λab(xb − µb)
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Conditional Gaussian Distribution (Contd.)

Since [
A B
C D

]−1

=

[
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

]
where M = (A− BD−1C )−1 is known as the Schur complement

Then

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb

All in all,

µa|b = µa + ΣabΣ−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ−1
bb Σba

Check the normalization item by yourselves
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Marginal Gaussian Distribution

n-dimensional multivariate Gaussian distribution

N (x ;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
where µ is the n-dimensional mean vector and Σ is the n×n-dimensional
covariance matrix

Marginal Gaussian

p(xa) =

∫
Rnb

p(xa, xb)dxb

If the marginal probability of xa is a Gaussian

N (xa; µ̄a,Σa) =
1

(2π)
n
2 |Σa|

1
2

exp

(
−1

2
(x − µ̄a)TΣ−1

a (x − µ̄a)

)
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Marginal Gaussian Distribution (Contd.)

Recalling the quadratic form of xa

−1

2
(x − µ)TΣ−1(x − µ) = −1

2
(xa − µa)TΛaa(xa − µa)

−(xa − µa)TΛab(xb − µb)

−1

2
(xb − µb)TΛbb(xb − µb)

Picking out all items involving xb

−1

2
xTb Λbbxb +xTb m = −1

2
(xb−Λ−1

bb m)TΛbb(xb−Λ−1
bb m) +

1

2
mTΛ−1

bb m

where m = Λbbµb − Λba(xa − µa)
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Marginal Gaussian Distribution (Contd.)

Taking the exponential of this quadratic form, the integration over xb
can be defined as∫

exp

(
−1

2
(xb − Λ−1

bb m)TΛbb(xb − Λ−1
bb m)

)
dxb

It is the integral over an unnormalized Gaussian, and hence the result
will be the reciprocal of the normalization coefficient which depends
only on the determinant of the covariance matrix
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Marginal Gaussian Distribution (Contd.)

Combining 1
2m

TΛ−1
bb m with the remaining terms depending on xa

1

2
[Λbbµb − Λba(xa − µa)]TΛ−1

bb [Λbbµb − Λba(xa − µa)]

−1

2
xTa Λaaxa + xTa (Λaaµa + Λabµb) + const

= −1

2
xTa (Λaa − ΛabΛ−1

bb Λba)xa

+xTa (Λaa − ΛabΛ−1
bb Λba)µa + const

Therefore

Σa = (Λaa − ΛabΛ−1
bb Λba)−1 = Σaa

µ̄a = Σa(Λaa − ΛabΛ−1
bb Λba)µa
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Factor Analysis Model

x = µ+ Λz + ε

x ∈ Rn, µ ∈ Rn, Λ ∈ Rn×k , z ∈ Rk , ε ∈ Rn

Λ is the factor loading matrix
z ∼ N (0, I ) (zero-mean independent normals, with unit variance)
ε ∼ N (0,Ψ) where Ψ is a diagonal matrix (the observed variables are
independent given the factors)

How do we get the training data {x (i)}i?
Generate {z (i)}i according to a multivariate Gaussian distributionN (0, I )
Map {z (i)}i into a n-dimensional affine space by Λ and µ
Generate {x (i)}i by sampling the above affine space with noise ε

Equivalently,

z ∼ N (0, I )

x |z ∼ N (µ+ Λz ,Ψ)
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Higher Dimension But Less Data

Consider a case with n� m

The given training data span only a low-dimensional subspace of Rn

If we Model the data as Gaussian and estimate the mean and covariance
using MLE

µ =
1

m

m∑
i=1

x (i)

Σ =
1

m

m∑
i=1

(x (i) − µ)(x (i) − µ)T

we may observe that Σ may be singular such that Σ−1 does not exist
and 1/|Σ|1/2 = 1/0

p(x ;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
Feng Li (SDU) PCA & FA December 28, 2021 32 / 42



Factor Analysis Model (Contd.)

z and x have a joint Gaussian distribution[
z
x

]
∼ N (µzx ,Σ)

Question: How to calculate µzx and Σ?

Since E [z ] = 0, we have

E [x ] = E [µ+ Λz + ε] = µ+ ΛE [z ] + E [ε] = µ

and then

µzx =

[
~0
µ

]
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Factor Analysis Model (Contd.)

Since z ∼ N (0, I ), E[zzT ] = Cov(z), and E[zεT ] = E[z ]E[εT ] = 0,

Σzz = E[(z − E [z ])(z − E [z ])T ] = Cov(z) = I

Σxx = E[(x − E[x ])(x − E[x ])T ]

= E[(µ+ Λz + ε− µ)(µ+ Λz + ε− µ)T ]

= E[ΛzzTΛT + εzTΛT + ΛzεT + εεT ]

= ΛE[zzT ]ΛT + E[εεT ]

= ΛΛT + Ψ

Σzx = E[(z − E[z ])(x − E[x ])T ]

= E[z(µ+ Λz + ε− µ)T ]

= E[zzT ]ΛT + E[zεT ]

= ΛT
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Factor Analysis Model (Contd.)

Putting everything together, we therefore have[
z
x

]
∼ N

([
~0
µ

]
,

[
I ΛT

Λ ΛΛT + Ψ

])
Then, x ∼ N (µ,ΛΛT + Ψ)

Log-likelihood function

`(µ,Λ,Ψ) = log
m∏
i=1

1

(2π)n/2|Σxx |1/2
exp

(
−1

2
(x (i) − µ)TΣ−1

xx (x (i) − µ)

)

Feng Li (SDU) PCA & FA December 28, 2021 35 / 42



EM Algorithm Review

Repeat the following step until convergence

(E-step) For each i , set

Qi (z
(i)) := p(z (i) | x (i); θ)

(M-step) set

θ := arg max
θ

∑
i

∑
z(i)

Qi (z
(i)) log

p(x (i), z (i); θ)

Qi (z (i))
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EM Algorithm for Factor Analysis

Recall that if [
xa
xb

]
∼ N

(
µ =

[
µa
µb

]
,Σ =

[
Σaa Σab

Σba Σbb

])
we then have

xa|xb ∼ N (µa|b,Σa|b)

where

µa|b = µa + ΣabΣ−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ−1
bb Σba
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EM Algorithm for Factor Analysis (Contd.)

Since [
z
x

]
∼ N

([
~0
µ

]
,

[
I ΛT

Λ ΛΛT + Ψ

])
we have

z(i)|x (i);µ,Λ,Ψ ∼ N (µz(i)|x(i) ,Σz(i)|x(i))

where

µz(i)|x(i) = ΛT (ΛΛT + Ψ)−1(x (i) − µ)

Σz(i)|x(i) = I − ΛT (ΛΛT + Ψ)−1Λ

Calculate Qi (z
(i)) in the E-step

Qi (z
(i)) =

exp
(
−1

2 (z(i) − µz(i)|x(i))TΣ−1
z(i)|x(i)(z

(i) − µz(i)|x(i))
)

(2π)n/2|Σz(i)|x(i) |1/2
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EM Algorithm for Factor Analysis (Contd.)

In M-step, we maximize the following equation with respect to µ, Λ,
and Ψ

m∑
i=1

∫
z(i)

Qi (z
(i)) log

p(x(i), z(i);µ, Λ,Ψ)

Qi (z
(i))

dz(i)

=
m∑
i=1

E
z(i)∼Qi

[
log p(x(i) | z(i);µ, Λ,Ψ) + log p(z(i))− log Qi (z

(i))
]

=
m∑
i=1

E
z(i)∼Qi

[
log

1

(2π)n/2|Ψ|1/2
exp

(
−

(x(i) − µ− Λz(i))T Ψ−1(x(i) − µ− Λz(i))

2

)
+ log p(z(i))− log Qi (z

(i))

]

=
m∑
i=1

E
z(i)∼Qi

[
−

1

2
log |Ψ| −

n

2
log(2π)−

1

2
(x(i) − µ− Λz(i))T Ψ−1(x(i) − µ− Λz(i)) + log p(z(i))− log Qi (z

(i))

]
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EM Algorithm for Factor Analysis (Contd.)

Let

∇Λ

m∑
i=1

−E[
1

2
(x(i) − µ− Λz(i))T Ψ−1(x(i) − µ− Λz(i))]

=
m∑
i=1

∇ΛEz(i)∼Qi

[
−tr

(
1

2
z(i)T ΛT Ψ−1Λz(i)

)
+ tr

(
z(i)T ΛT Ψ−1(x(i) − µ)

)]

=
m∑
i=1

∇ΛEz(i)∼Qi

[
−tr

(
1

2
ΛT Ψ−1Λz(i)z(i)T

)
+ tr

(
ΛT Ψ−1(x(i) − µ)z(i)T

)]

=
m∑
i=1

E
z(i)∼Qi

[
−Ψ−1Λz(i)z(i)T + Ψ−1(x(i) − µ)z(i)T

]
= 0

we have

Λ =

(
m∑
i=1

(x (i) − µ)Ez(i)∼Qi

[
z (i)T

])( m∑
i=1

Ez(i)∼Qi

[
z (i)z (i)T

])−1

=

(
m∑
i=1

(x (i) − µ)µT
z(i)|x (i)

)(
m∑
i=1

µz(i)|x (i)µT
z(i)|x (i) + Σz(i)|x (i)

)−1
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EM Algorithm for Factor Analysis (Contd.)

Maximize

m∑
i=1

∫
z(i)

Qi (z
(i)) log

p(x (i), z(i);µ,Λ,Ψ)

Qi (z(i))
dz(i)

with respect to µ and Ψ

Results are as follows

µ =
1

m

m∑
i=1

x (i)

Ψ = diag(
1

m

m∑
i=1

x (i)x (i)T − x (i)µT
z(i)|x(i)Λ

T − Λµz(i)|x(i)x (i)T +

Λ(µz(i)|x(i)µTz(i)|x(i) + Σz(i)|x(i))ΛT )

Feng Li (SDU) PCA & FA December 28, 2021 41 / 42



Thanks!

Q & A
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