Outline

1. SVM: A Primal Form
2. Convex Optimization Review
3. The Lagrange Dual Problem of SVM
4. SVM with Kernels
5. Soft-Margin SVM
6. Sequential Minimal Optimization (SMO) Algorithm
Hyperplane

- Separates a n-dimensional space into two half-spaces

\[y = \text{sign}(\omega^T x + b) \]

- Defined by an outward pointing normal vector $\omega \in \mathbb{R}^n$
- Assumption: The hyperplane passes through origin. If not,
 - have a bias term b; we will then need both ω and b to define it
 - $b > 0$ means moving it parrellely along ω ($b < 0$ means in opposite direction)
A hyperplane based linear classifier defined by ω and b

Prediction rule: $y = \text{sign}(\omega^T x + b)$

Given: Training data $\{(x^{(i)}, y^{(i)})\}_{i=1,\ldots,m}$

Goal: Learn ω and b that achieve the maximum **margin**

For now, assume that entire training data are correctly classified by (ω, b)
- Zero loss on the training examples (non-zero loss later)
Hyperplane: \(\mathbf{\omega}^T \mathbf{x} + b = 0 \), where \(\mathbf{\omega} \) is the normal vector

The margin \(\gamma^{(i)} \) is the *signed* distance between \(\mathbf{x}^{(i)} \) and the hyperplane

\[
\mathbf{\omega}^T \left(\mathbf{x}^{(i)} - \gamma^{(i)} \frac{\mathbf{\omega}}{\|\mathbf{\omega}\|} \right) + b = 0 \implies \gamma^{(i)} = \left(\frac{\mathbf{\omega}}{\|\mathbf{\omega}\|} \right)^T \mathbf{x}^{(i)} + \frac{b}{\|\mathbf{\omega}\|}
\]
Margin (Contd.)

- Hyperplane: $\omega^T x + b = 0$, where ω is the normal vector
- The margin $\gamma^{(i)}$ is the distance between $x^{(i)}$ and the hyperplane
- Now, the margin is signed
 - If $y^{(i)} = 1$, $\gamma^{(i)} \geq 0$; otherwise, $\gamma^{(i)} < 0$
Geometric margin

\[
\gamma^{(i)} = y^{(i)} \left(\frac{\omega}{\|\omega\|} \right)^T x^{(i)} + \frac{b}{\|\omega\|}
\]
Margin (Contd.)

- Geometric margin

\[\gamma^{(i)} = y^{(i)} \left(\left(\frac{\omega}{\|\omega\|} \right)^T x^{(i)} + \frac{b}{\|\omega\|} \right) \]

- Scaling \((\omega, b)\) does not change \(\gamma^{(i)}\)
- Geometric margin \(\gamma^{(i)} = y^{(i)} \left((\omega/\|\omega\|)^T x^{(i)} + b/\|\omega\| \right) \)

- Scaling \((\omega, b)\) does not change \(\gamma^{(i)} \)

- With respect to the whole training set, the margin is written as

\[
\gamma = \min_i \gamma^{(i)}
\]
Maximizing The Margin

- The hyperplane actually serves as a decision boundary to differentiating positive labels from negative labels.
- We make more confident decision if larger margin is given, i.e., the data sample is further away from the hyperplane.
- There exist a infinite number of hyperplanes, but which one is the best?

\[
\max_{\omega, b} \min_i \{\gamma^{(i)}\}
\]
Maximizing The Margin (Contd.)

- There exist an infinite number of hyperplanes, but which one is the best?

\[
\max \omega, b \min_i \{ \gamma(i) \}
\]

- It is equivalent to

\[
\max_{\gamma, \omega, b} \gamma \\
\text{s.t. } \gamma(i) \geq \gamma, \ \forall i
\]

- Since

\[
\gamma(i) = y(i) \left(\left(\frac{\omega}{\| \omega \|} \right)^T x(i) + \frac{b}{\| \omega \|} \right)
\]

the constraint becomes

\[
y(i) (\omega^T x(i) + b) \geq \gamma \| \omega \|, \ \forall i
\]
Formally,

\[
\max_{\gamma, \omega, b} \gamma \\
\text{s.t. } y^{(i)}(\omega^T x^{(i)} + b) \geq \gamma \|\omega\|, \ \forall i
\]
Maximizing The Margin (Contd.)

- Scaling \((\omega, b) \) such that \(\min_i \{y^{(i)}(\omega^T x^{(i)} + b)\} = 1 \),

\[
\gamma = \min_i \left\{ y^{(i)} \left(\left(\frac{\omega}{\|\omega\|} \right)^T x^{(i)} + \frac{b}{\|\omega\|} \right) \right\} = \frac{1}{\|\omega\|}
\]

Scaling \(\omega \) and \(b \) such that \(\min_i \{y^{(i)}(\omega^T x^{(i)} + b)\} = 1 \)

\[
\omega^T x + b = -\gamma \|\omega\|
\]
\[
\omega^T x + b = 0
\]
\[
\omega^T x + b = 1
\]
The problem becomes

$$\max_{\omega, b} \frac{1}{\|\omega\|}$$

s.t. $$y^{(i)}(\omega^T x^{(i)} + b) \geq 1, \forall i$$

Scaling ω and b such that

$$\min_i \{y^{(i)}(\omega^T x^{(i)} + b)\} = 1$$
Support Vector Machine (Primal Form)

- Maximizing $1/\|\omega\|$ is equivalent to minimizing $\|\omega\|^2 = \omega^T\omega$

$$\min_{\omega, b} \omega^T\omega$$

$$\text{s.t. } y^{(i)}(\omega^T x^{(i)} + b) \geq 1, \forall i$$

- This is a quadratic programming (QP) problem!
 - Interior point method
 - Active set method
 (https://en.wikipedia.org/wiki/Active_set_method)
 - Gradient projection method
 (http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf)
 - ...

- Existing generic QP solvers is of low efficiency, especially in face of a large training set
Convex Optimization Review

- Optimization Problem
- Lagrangian Duality
- KKT Conditions
- Convex Optimization

Considering the following optimization problem

\[
\begin{align*}
\min_{\omega} & \quad f(\omega) \\
\text{s.t.} & \quad g_i(\omega) \leq 0, \; i = 1, \cdots, k \\
& \quad h_j(\omega) = 0, \; j = 1, \cdots, l
\end{align*}
\]

with variable \(\omega \in \mathbb{R}^n \), domain \(\mathcal{D} = \bigcap_{i=1}^{k} \text{dom} g_i \cap \bigcap_{j=1}^{l} \text{dom} h_j \), optimal value \(p^* \)

- Objective function \(f(\omega) \)
- \(k \) inequality constraints \(g_i(\omega) \leq 0, \; i = 1, \cdots, k \)
- \(l \) equality constraints \(h_j(\omega) = 0, \; j = 1, \cdots, l \)
Lagrangian: \(\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^l \rightarrow \mathbb{R} \), with \(\text{dom}\mathcal{L} = D \times \mathbb{R}^k \times \mathbb{R}^l \)

\[
\mathcal{L}(\omega, \alpha, \beta) = f(\omega) + \sum_{i=1}^{k} \alpha_i g_i(\omega) + \sum_{j=1}^{l} \beta_j h_j(\omega)
\]

- Weighted sum of objective and constraint functions
- \(\alpha_i \) is Lagrange multiplier associated with \(g_i(\omega) \leq 0 \)
- \(\beta_j \) is Lagrange multiplier associated with \(h_j(\omega) = 0 \)
The Lagrange dual function $\mathcal{G} : \mathbb{R}^k \times \mathbb{R}^l \to \mathbb{R}$

$$\mathcal{G}(\alpha, \beta) = \inf_{\omega \in \mathcal{D}} \mathcal{L}(\omega, \alpha, \beta)$$

$$= \inf_{\omega \in \mathcal{D}} \left(f(\omega) + \sum_{i=1}^{k} \alpha_i g_i(\omega) + \sum_{j=1}^{l} \beta_j h_j(\omega) \right)$$

\mathcal{G} is concave, can be $-\infty$ for some α, β
The Lower Bounds Property

- If $\alpha \geq 0$, then $G(\alpha, \beta) \leq p^*$, where p^* is the optimal value of the primal problem.

Proof: If $\tilde{\omega}$ is feasible and $\alpha \geq 0$, then

$$f(\tilde{\omega}) \geq \mathcal{L}(\tilde{\omega}, \alpha, \beta) \geq \inf_{\omega \in \mathcal{D}} \mathcal{L}(\omega, \alpha, \beta) = G(\alpha, \beta)$$

minimizing over all feasible $\tilde{\omega}$ gives $p^* \geq G(\alpha, \beta)$
Lagrange Dual Problem

- Lagrange dual problem

\[
\max_{\alpha, \beta} \ G(\alpha, \beta) \\
\text{s.t.} \quad \alpha \succeq 0, \ \forall i = 1, \cdots, k
\]

- Find the best low bound on \(p^* \), obtained from Lagrange dual function

- A convex optimization problem (optimal value denoted by \(d^* \))

- \(\alpha, \beta \) are dual feasible if \(\alpha \succeq 0, (\alpha, \beta) \in \text{dom} \ G \) and \(G > -\infty \)

- Often simplified by making implicit constraint \((\alpha, \beta) \in \text{dom} \ G \) explicit
Weak Duality

- Weak duality: \(d^* \leq p^* \)
 - Always holds
 - Can be used to find nontrivial lower bounds for difficult problems
 - Optimal duality gap: \(p^* - d^* \)
Complementary Slackness

- Let ω^* be a primal optimal point and (α^*, β^*) be a dual optimal point.
- If strong duality holds, then
 \[\alpha^*_i g_i(\omega^*) = 0 \]
 for $\forall i = 1, 2, \cdots, k$.
Complementary Slackness (Proof)

- We have

\[
 f(\omega^*) = \mathcal{G}(\alpha^*, \beta^*)
\]

\[
 = \inf_{\omega} \left(f(\omega) + \sum_{i=1}^{k} \alpha_i^* g_i(\omega) + \sum_{j=1}^{l} \beta_j^* h_j(\omega) \right)
\]

\[
 \leq f(\omega^*) + \sum_{i=1}^{k} \alpha_i^* g_i(\omega^*) + \sum_{j=1}^{l} \beta_j^* h_j(\omega^*) \leq f(\omega^*)
\]

- The last two inequalities hold with equality, such that we have

\[
 \sum_{i=1}^{k} \alpha_i^* g_i(\omega^*) = 0
\]

- Since each term, i.e., \(\alpha_i^* g_i(\omega^*) \), is nonpositive, we thus conclude

\[
 \alpha_i^* g_i(\omega^*) = 0, \quad \forall i = 1, 2, \ldots, k
\]
Karush-Kuhn-Tucker (KKT) Conditions

- Let ω^* and (α^*, β^*) be any primal and dual optimal points with zero duality gap (i.e., the strong duality holds), the following conditions should be satisfied
 - Stationarity: Gradient of Lagrangian with respect to ω vanishes
 \[
 \nabla f(\omega^*) + \sum_{i=1}^{k} \alpha_i \nabla g_i(\omega^*) + \sum_{j=1}^{l} \beta_j \nabla h_j(\omega^*) = 0
 \]
 - Primal feasibility
 \[
 g_i(\omega^*) \leq 0, \ \forall i = 1, \cdots, k
 \]
 \[
 h_j(\omega^*) = 0, \ \forall j = 1, \cdots, l
 \]
 - Dual feasibility
 \[
 \alpha_i^* \geq 0, \ \forall i = 1, \cdots, k
 \]
 - Complementary slackness
 \[
 \alpha_i^* g_i(\omega^*) = 0, \ \forall i = 1, \cdots, k
 \]
Convex Optimization Problem

- Problem Formulation

\[
\begin{align*}
\min_{\omega} & \quad f(\omega) \\
\text{s.t.} & \quad g_i(\omega) \leq 0, \quad i = 1, \cdots, k \\
& \quad A\omega - b = 0
\end{align*}
\]

- \(f\) and \(g_i\) (\(i = 1, \cdots, k\)) are convex
- \(A\) is a \(l \times n\) matrix, \(b \in \mathbb{R}^l\)
Weak Duality V.s. Strong Duality

- **Weak duality:** $d^* \leq p^*$
 - Always holds
 - Can be used to find nontrivial lower bounds for difficult problems

- **Strong duality:** $d^* = p^*$
 - Does not hold in general
 - (Usually) holds for convex problems
 - Conditions that guarantee strong duality in convex problems are called **constraint qualifications**
Slater’s Constraint Qualification

- Strong duality holds for a convex problem

\[
\min_{\omega} \quad f(\omega) \\
\text{s.t.} \quad g_i(\omega) \leq 0, \quad i = 1, \ldots, k \\
A\omega - b = 0
\]

if it is strictly feasible, i.e.,

\[
\exists \omega \in \text{relint} \mathcal{D} : g_i(\omega) < 0, \quad i = 1, \ldots, m, \quad A\omega = b
\]
For convex optimization problem, the KKT conditions are also sufficient for the points to be primal and dual optimal.

Suppose \(\tilde{\omega}, \tilde{\alpha}, \) and \(\tilde{\beta} \) are any points satisfying the following KKT conditions:

\[
\begin{align*}
g_i(\tilde{\omega}) &\leq 0, \quad \forall i = 1, \ldots, k \\
h_j(\tilde{\omega}) & = 0, \quad \forall j = 1, \ldots, l \\
\tilde{\alpha}_i &\geq 0, \quad \forall i = 1, \ldots, k \\
\tilde{\alpha}_i g_i(\tilde{\omega}) & = 0, \quad \forall i = 1, \ldots, k
\end{align*}
\]

\[
\nabla f(\tilde{\omega}) + \sum_{i=1}^{k} \tilde{\alpha}_i \nabla g_i(\tilde{\omega}) + \sum_{j=1}^{l} \tilde{\beta}_j \nabla h_j(\tilde{\omega}) = 0
\]

then they are primal and dual optimal with strong duality holding.
Primal (convex) problem formulation

$$\min_{\omega, b} \frac{1}{2} \|\omega\|^2$$

s.t. \(y^{(i)}(\omega^T x^{(i)} + b) \geq 1, \ \forall i \)

The Lagrangian

$$\mathcal{L}(\omega, b, \alpha) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^{m} \alpha_i (y^{(i)}(\omega^T x^{(i)} + b) - 1)$$

The Lagrange dual function

$$\mathcal{G}(\alpha) = \inf_{\omega, b} \mathcal{L}(\omega, b, \alpha)$$
Optimal Margin Classifier

- **Dual problem formulation**

\[
\begin{align*}
\max_{\alpha} & \quad \inf_{\omega, b} \mathcal{L}(\omega, b, \alpha) \\
\text{s.t.} & \quad \alpha_i \geq 0, \quad \forall i
\end{align*}
\]

- **The Lagrangian**

\[
\mathcal{L}(\omega, b, \alpha) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^{m} \alpha_i (y^{(i)}(\omega^T x^{(i)} + b) - 1)
\]

- **The Lagrange dual function**

\[
G(\alpha) = \inf_{\omega, b} \mathcal{L}(\omega, b, \alpha)
\]
Dual problem formulation

\[
\max_{\alpha} \quad G(\alpha) = \inf_{\omega, b} \mathcal{L}(\omega, b, \alpha)
\]

s.t. \(\alpha_i \geq 0 \ \forall i \)
According to KKT conditions, minimizing $L(\omega, b, \alpha)$ over ω and b

$$\nabla_\omega L(\omega, b, \alpha) = \omega - \sum_{i=1}^{m} \alpha_i y(i) x(i) = 0 \Rightarrow \omega = \sum_{i=1}^{m} \alpha_i y(i) x(i)$$

$$\frac{\partial}{\partial b} L(\omega, b, \alpha) = \sum_{i=1}^{m} \alpha_i y(i) = 0$$

The Lagrange dual function becomes

$$G(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y(i) y(j) \alpha_i \alpha_j (x(i))^T x(j)$$

with $\sum_{i=1}^{m} \alpha_i y(i) = 0$ and $\alpha_i \geq 0$
Dual problem formulation

$$\max_{\alpha} \quad G(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

s.t. \(\alpha_i \geq 0 \ \forall i \)

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

It is a convex optimization problem, so the strong duality \((p^* = d^*)\) holds and the KKT conditions are respected.

Quadratic Programming problem in \(\alpha\)
- Several off-the-shelf solvers exist to solve such QPs
- Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.
Once we have the α^*,

$$\omega^* = \sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)}$$

Given ω^*, how to calculate the optimal value of b?
Since $\alpha_i^*(y(i)(\omega^*^T x(i) + b) - 1) = 0$, for $\forall i$, we have

$$y(i)(\omega^*^T x(i) + b^*) = 1$$

for $\{i : \alpha_i^* > 0\}$

Then, for $\forall i$ such that $\alpha_i^* > 0$, we have

$$b^* = y(i) - \omega^*^T x(i)$$

For robustness, we calculated the optimal value for b by taking the average

$$b^* = \frac{\sum_{i:\alpha_i^* > 0}(y(i) - \omega^*^T x(i))}{\sum_{i=1}^{m} \mathbf{1}(\alpha_i^* > 0)}$$
Most α_i's in the solution are zero (sparse solution)

- According to KKT conditions, for the optimal α_i's,

$$\alpha_i \left(1 - y^{(i)}(\omega^T x^{(i)} + b)\right) = 0$$

- α_i is non-zero only if $x^{(i)}$ lies on the one of the two margin boundaries. i.e., for which $y^{(i)}(\omega^T x^{(i)} + b) = 1$
These data samples are called support vector (i.e., support vectors “support” the margin boundaries)
Redefine ω^*

$$\omega^* = \sum_{s \in S} \alpha^*_s y^{(s)} x^{(s)}$$

where S denotes the indices of the support vectors
Kernel Methods

- **Motivation**: Linear models (e.g., linear regression, linear SVM etc.) cannot reflect the nonlinear pattern in the data

- **Kernels**: Make linear model work in nonlinear settings
 - By mapping data to higher dimensions where it exhibits linear patterns
 - Apply the linear model in the new input space
 - Mapping is equivalent to changing the feature representation
Consider the following binary classification problem:

- Each sample is represented by a single feature x
- No linear separator exists for this data
Feature Mapping (Contd.)

- Now map each example as $x \rightarrow \{x, x^2\}$
 - Each example now has two features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation
Another example

- Each sample is defined by \(x = \{x_1, x_2\} \)
- No linear separator exists for this data
Now map each example as $x = \{x_1, x_2\} \rightarrow z = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$

- Each example now has three features ("derived" from the old representation)

- Data now becomes linearly separable in the new representation
Consider the following feature mapping ϕ for an example $x = \{x_1, \cdots, x_n\}$

$$\phi : x \rightarrow \{x_1^2, x_2^2, \cdots, x_n^2, x_1x_2, x_1x_2, \cdots, x_1x_n, \cdots, x_{n-1}x_n\}$$

It is an example of a quadratic mapping

- Each new feature uses a pair of the original features
Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient, especially when the new space is very high dimensional
- Storing and using these mappings in later computations can be expensive (e.g., we may have to compute inner products in a very high dimensional space)
- Using the mapped representation could be inefficient too

Thankfully, kernels help us avoid both these issues!
- The mapping does not have to be explicitly computed
- Computations with the mapped features remain efficient
Kernels as High Dimensional Feature Mapping

- Let's assume we are given a function K (kernel) that takes as inputs x and z

\[
K(x, z) = (x^T z)^2
\]
\[
= (x_1 z_1 + x_2 z_2)^2
\]
\[
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
\]
\[
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^T (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
\]

- The above function K implicitly defines a mapping ϕ to a higher dim. space

\[
\phi(x) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}
\]

- Simply defining the kernel in a certain way gives a higher dim. mapping ϕ

 - The mapping does not have to be explicitly computed
 - Computations with the mapped features remain efficient
Each kernel K has an associated feature mapping ϕ

ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} (feature space)

Kernel $K(x, z) = \phi(x)^T \phi(z)$ takes two inputs and gives their similarity in \mathcal{F} space

\[
\phi : \mathcal{X} \rightarrow \mathcal{F} \\
K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
\]

\mathcal{F} needs to be a vector space with a dot product defined upon it

- Also called a Hilbert Space

Can just any function be used as a kernel function?

- No. It must satisfy Mercer’s Condition
Mercer’s Condition

- For K to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which K defines a dot product
 - The above is true if K is a positive definite function

$$\int \int f(x)K(x, z)f(z)dxdz > 0 \quad (\forall f \in L_2)$$

for all functions f that are “square integrable”, i.e.,

$$\int_{-\infty}^{\infty} f^2(x)dx < \infty$$
Let K_1 and K_2 be two kernel functions then the followings are as well:

- Direct sum: $K(x, z) = K_1(x, z) + K_2(x, z)$
- Scalar product: $K(x, z) = \alpha K_1(x, z)$
- Direct product: $K(x, z) = K_1(x, z)K_2(x, z)$
- Kernels can also be constructed by composing these rules
For K to be a kernel function
- The kernel function K also defines the Kernel Matrix over the data (also denoted by K)
- Given m samples $\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\}$, the (i, j)-th entry of K is defined as
 \[K_{i,j} = K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)}) \]
- $K_{i,j}$: Similarity between the i-th and j-th example in the feature space \mathcal{F}
- K: $m \times m$ matrix of pairwise similarities between samples in \mathcal{F} space
- K is a symmetric matrix
- K is a positive semi-definite matrix
Some Examples of Kernels

- **Linear (trivial) Kernel:**

 \[K(x, z) = x^T z \]

- **Quadratic Kernel**

 \[K(x, z) = (x^T z)^2 \text{ or } (1 + x^T z)^2 \]

- **Polynomial Kernel (of degree } d\text{)**

 \[K(x, z) = (x^T z)^d \text{ or } (1 + x^T z)^d \]

- **Gaussian Kernel**

 \[K(x, z) = \exp \left(- \frac{\|x - z\|^2}{2\sigma^2} \right) \]

- **Sigmoid Kernel**

 \[K(x, z) = \tanh(\alpha x^T + c) \]
Using Kernels

- Kernels can turn a linear model into a nonlinear one.
- Kernel $K(x, z)$ represents a dot product in some high dimensional feature space \mathcal{F}:
 $$K(x, z) = (x^T z)^2 \text{ or } (1 + x^T z)^2$$
- Any learning algorithm in which examples only appear as dot products $(x^{(i)}^T x^{(j)})$ can be kernelized (i.e., non-linearized).
 - By replacing the $x^{(i)}^T x^{(j)}$ terms by $\phi(x^{(i)})^T \phi(x^{(j)}) = K(x^{(i)}, x^{(j)})$.
- Most learning algorithms are like that:
 - SVM, linear regression, etc.
 - Many of the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering, Principal Component Analysis, etc.)
SVM dual Lagrangian

\[
\begin{align*}
\max_{\alpha} & \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j < x^{(i)}, x^{(j)} > \\
\text{s.t.} & \quad \sum_{i=1}^{m} \alpha_i y^{(i)} = 0 \\
& \quad \alpha_i \geq 0, \quad \forall i
\end{align*}
\]
Kernelized SVM Training (Contd.)

- Replacing \(<x^{(i)}, x^{(j)}> \) by \(\phi(x^{(i)})^T \phi(x^{(j)}) = K(x^{(i)}, x^{(j)}) = K_{ij} \)

\[
\begin{align*}
\max_{\alpha} & \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j K_{i,j} \\
\text{s.t.} & \quad \sum_{i=1}^{m} \alpha_i y^{(i)} = 0 \\
& \quad \alpha_i \geq 0, \; \forall i
\end{align*}
\]

- SVM now learns a linear separator in the kernel defined feature space \(\mathcal{F} \)
 - This corresponds to a non-linear separator in the original space \(\mathcal{X} \)
Define the decision boundary \(\omega^* T \phi(x) + b^* \) in the higher-dimensional feature space

\[
\omega^* = \sum_{i: \alpha_i^* > 0} \alpha_i^* y(i) \phi(x(i))
\]

\[
b^* = y(i) - \omega^* T \phi(x(i))
\]

\[
= y(i) - \sum_{j: \alpha_j^* > 0} \alpha_j^* y(j) \phi^T(x(j)) \phi(x(i))
\]

\[
= y(i) - \sum_{j: \alpha_j^* > 0} \alpha_j^* y(j) K_{ij}
\]
Kernelized SVM Prediction (Contd.)

Given a test data sample x

$$y = \text{sign} \left(\sum_{i: \alpha_i^* > 0} \alpha_i^* y^{(i)} \phi(x^{(i)})^T \phi(x) + b^* \right)$$

$$= \text{sign} \left(\sum_{i: \alpha_i^* > 0} \alpha_i^* y^{(i)} K(x^{(i)}, x) + b^* \right)$$

Kernelized SVM needs the support vectors at the test time (except when you can write $\phi(x)$ as an explicit, reasonably-sized vector).

- In the unkernelized version $\omega = \sum_{i: \alpha_i^* > 0} \alpha_i^* y^{(i)} x^{(i)} + b^*$ can be computed and stored as a $n \times 1$ vector, so the support vectors need not be stored.
We allow some training examples to be misclassified, and some training examples to fall within the margin region.
Recall that, for the separable case (training loss $= 0$), the constraints were:

$$y^{(i)}(\omega^T x^{(i)} + b) \geq 1 \quad for \quad \forall i$$

For the non-separable case, we relax the above constraints as:

$$y^{(i)}(\omega^T x^{(i)} + b) \geq 1 - \xi_i \quad for \quad \forall i$$

- ξ_i is called slack variable

Non-separable case

We will allow misclassified training samples, but we want the number of such samples to be minimized, by minimizing the sum of the slack variables $\sum_i \xi_i$.
Reformulating the SVM problem by introducing slack variables ξ_i

$$\min_{\omega,b,\xi} \frac{1}{2}\|\omega\|^2 + C \sum_{i=1}^{m} \xi_i$$

$$s.t. \quad y^{(i)}(\omega^T x^{(i)} + b) \geq 1 - \xi_i, \quad \forall i = 1, \cdots, m$$

$$\xi_i \geq 0, \quad \forall i = 1, \cdots, m$$

The parameter C controls the relative weighting between the following two goals

- Small $C \Rightarrow \|\omega\|^2/2$ dominates \Rightarrow prefer large margins
 - but allow potential large number of misclassified training examples
- Large $C \Rightarrow C \sum_{i=1}^{m} \xi_i$ dominates \Rightarrow prefer small number of misclassified examples
 - at the expense of having a small margin
Lagrangian

\[L(\omega, b, \xi, \alpha, r) = \frac{1}{2} \omega^T \omega + C \sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \alpha_i [y^{(i)}(\omega^T x^{(i)} + b) - 1 + \xi_i] - \sum_{i=1}^{m} r_i \xi_i \]

KKT conditions (the optimal values of \(\omega, b, \xi, \alpha, \) and \(r \) should satisfy the following conditions)

- \(\nabla_\omega L(\omega, b, \xi, \alpha, r) = 0 \Rightarrow \omega^* = \sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)} \)
- \(\nabla_b L(\omega, b, \xi, \alpha, r) = 0 \Rightarrow \sum_{i=1}^{m} \alpha_i^* y^{(i)} = 0 \)
- \(\nabla_{\xi_i} L(\omega, b, \xi, \alpha, r) = 0 \Rightarrow \alpha_i^* + r_i^* = C, \text{ for } \forall i \)
- \(\alpha_i^*, r_i^*, \xi_i^* \geq 0, \text{ for } \forall i \)
- \(y^{(i)}(\omega^*^T x^{(i)} + b^*) + \xi_i^* - 1 \geq 0, \text{ for } \forall i \)
- \(\alpha_i^* (y^{(i)}(\omega^* x^{(i)} + b^*) + \xi_i^* - 1) = 0, \text{ for } \forall i \)
- \(r_i^* \xi_i^* = 0, \text{ for } \forall i \)
Dual problem

\[
\begin{align*}
\max_{\alpha} \quad & J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \quad \langle x^{(i)}, x^{(j)} \rangle > \\
\text{s.t.} \quad & 0 \leq \alpha_i \leq C, \quad \forall i = 1, \ldots, m \\
\quad & \sum_{i=1}^{m} \alpha_i y^{(i)} = 0
\end{align*}
\]

Use existing QP solvers to address the above optimization problem.
Soft-Margin SVM (Contd.)

- Optimal values for $\alpha_i \ (i = 1, \cdots, m)$
- How to calculate the optimal values of ω and b?
 - Use KKT conditions!
By resolving the above optimization problem, we get the optimal value of $\alpha_i \ (i = 1, \cdots, m)$

How to calculate the optimal values of ω and b?

According to the KKT conditions, we have

$$\omega^* = \sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)}$$

How about b^*?
Since $\alpha^*_i + r^*_i = C$, for $\forall i$, we have

$$r^*_i = C - \alpha^*_i, \quad \forall i$$

Since $r^*_i \xi^*_i = 0$, for $\forall i$, we have

$$(C - \alpha^*_i)\xi^*_i = 0, \quad \forall i$$

For $\forall i$ such that $\alpha^*_i \neq C$, we have $\xi_i = 0$, and thus

$$\alpha^*_i(y^{(i)}(\omega^*^T x^{(i)} + b^*) - 1) = 0$$
For $\forall i$ such that $0 < \alpha_i^* < C$, we have

$$y^{(i)}(\omega^*^T x^{(i)} + b^*) = 1$$

Hence,

$$\omega^*^T x^{(i)} + b^* = y^{(i)}$$

for $\forall i$ such that $0 < \alpha_i^* < C$

We finally calculate b as

$$b^* = \frac{\sum_{i:0<\alpha_i^*<C} (y^{(i)} - \omega^*^T x^{(i)})}{\sum_{i=1}^{m} \mathbf{1}(0 < \alpha_i^* < C)}$$
Soft-margin SVM classifier

\[y = \text{sign} \left(\omega^* T x + b^* \right) \]

\[= \text{sign} \left(\sum_{i=1}^{m} \alpha_i^* y^{(i)} x^{(i)} < x^{(i)}, x > + b^* \right) \]
Some useful corollaries according to the KKT conditions

- When $\alpha^*_i = 0$, $y^{(i)}(\omega^* T x^{(i)} + b^*) \geq 1$
- When $\alpha^*_i = C$, $y^{(i)}(\omega^* T x^{(i)} + b^*) \leq 1$
- When $0 < \alpha^*_i < C$, $y^{(i)}(\omega^* T x^{(i)} + b^*) = 1$

For $\forall i = 1, \cdots, m$, $x^{(i)}$ is

- correctly classified if $\alpha^*_i = 0$
- misclassified if $\alpha^*_i = C$
- a support vector if $0 \leq \alpha^*_i \leq C$
Corollary

For $\forall i = 1, 2, \cdots, m$, when $\alpha_i^* = 0$, $y^{(i)}(\omega^* T x^{(i)} + b^*) \geq 1$.

Proof.

$\therefore \alpha_i^* = 0, \alpha_i^* + r_i^* = C$
$\therefore r_i^* = C$
$\therefore r_i^* \xi_i^* = 0$
$\therefore \xi_i^* = 0$
$\therefore y^{(i)}(\omega^* T x^{(i)} + b^*) + \xi_i^* - 1 \geq 0$
$\therefore y^{(i)}(\omega^* T x^{(i)} + b^*) \geq 1$
Corollary

For $\forall i = 1, 2, \cdots, m$, when $\alpha^*_i = C$, $y^{(i)}(\omega^*^T x^{(i)} + b^*) \leq 1$

Proof.

\[
\therefore \alpha^*_i = C, \quad \alpha^*_i(y^{(i)}(\omega^*^T x^{(i)} + b^*) + \xi^*_i - 1) = 0 \\
\therefore y^{(i)}(\omega^*^T x^{(i)} + b^*) + \xi^*_i - 1 = 0 \\
\therefore \xi^*_i \geq 0 \\
\therefore y^{(i)}(\omega^*^T x^{(i)} + b^*) = 1 - \xi^* \leq 1
\]
Corollary

For $\forall i = 1, 2, \cdots, m$, when $0 < \alpha_i^* < C$, $y^{(i)}(\omega^* T x^{(i)} + b^*) = 1$.

Proof.

$\therefore 0 < \alpha_i^* < C, \alpha_i^* + r_i^* = C$

$\therefore 0 < r_i^* < C$

$\therefore r_i^* \xi_i^* = 0$

$\therefore \xi_i^* = 0$

$\therefore 0 < \alpha_i^* < C, \alpha_i^* (y^{(i)}(\omega^* T x^{(i)} + b) + \xi_i^* - 1) = 0$

$\therefore y^{(i)}(\omega^* T x^{(i)} + b^*) + \xi_i^* - 1 = 0$

$\therefore y^{(i)}(\omega^* T x^{(i)} + b^*) = 1$
Coordinate Ascent Algorithm

- Consider the following unconstrained optimization problem

\[
\max_{\alpha} J(\alpha_1, \alpha_2, \cdots, \alpha_m)
\]

- Repeat the following step until convergence
 - For each \(i\), \(\alpha_i = \arg \max_{\alpha_i} J(\alpha_1, \cdots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \cdots, \alpha_m)\)
 - For some \(\alpha_i\), fix the other variables and re-optimize \(J(\alpha)\) with respect to \(\alpha_i\)
Coordinate ascent algorithm cannot be applied since $\sum_{i=0}^{m} \alpha_i y^{(i)} = 0$

The basic idea of SMO

Algorithm 1 SMO algorithm

1: **Given** a starting point $\alpha \in \text{dom} \ J$
2: **repeat**
3: Select some pair of α_i and α_j to update next (using a heuristic that tries to pick the two α’s);
4: Re-optimize $J(\alpha)$ with respect to α_i and α_j, while holding all the other α_k’s $(k \neq i, j)$ fixed
5: **until** convergence criterion is satisfied
Convergence criterion

\[
\sum_{i=1}^{m} \alpha_i y^{(i)} = 0, \quad 0 \leq \alpha_i \leq C, \quad \forall i = 1, \ldots, m
\]

\[
y^{(i)} \left(\sum_{j=1}^{m} \alpha_j y^{(j)} < x^{(i)} \cdot x^{(j)} + b \right) = \begin{cases}
\geq 1, & \forall i : \alpha_i = 0 \\
= 1, & \forall i : 0 < \alpha_i < C \\
\leq 1, & \forall i : \alpha_i = C
\end{cases}
\]
SMO Algorithm (Contd.)

Take α_1 and α_2 for example

$$J(\alpha_1^+, \alpha_2^+) = \alpha_1^+ + \alpha_2^+ - \frac{1}{2}K_{11}\alpha_1^{+2} - \frac{1}{2}K_{22}\alpha_2^{+2} - SK_{12}\alpha_1^+\alpha_2^+$$

$$-y^{(1)}V_1\alpha_1^+ - y^{(2)}V_2\alpha_2^+ + \Psi$$

where

$$K_{ij} = \langle x^{(i)}, x^{(j)} \rangle$$

$$S = y^{(1)}y^{(2)}$$

$$\Psi = \sum_{i=3}^{m}\alpha_i - \frac{1}{2}\sum_{i=3}^{m}\sum_{j=3}^{m}y^{(i)}y^{(j)}\alpha_i\alpha_jK_{ij}$$

$$V_i = \sum_{j=3}^{m}y^{(j)}\alpha_jK_{ij}$$
Define

\[\zeta = \alpha_1^+ y^{(1)} + \alpha_2^+ y^{(2)} = - \sum_{i=3}^{m} \alpha_i y^{(i)} = \alpha_1 y^{(1)} + \alpha_2 y^{(2)} \]

Lower bound \(L \) and upper bound \(H \) for \(\alpha_2^+ \):

- When \(y^{(1)} y^{(2)} = -1 \), \(H = \min\{ C, C + \alpha_2 - \alpha_1 \} \) and \(L = \max\{ 0, \alpha_2 - \alpha_1 \} \)
- When \(y^{(1)} y^{(2)} = 1 \), \(H = \min\{ C, \alpha_2 + \alpha_1 \} \) and \(L = \max\{ 0, \alpha_1 + \alpha_2 - C \} \)
Address the following optimization problem

$$\max_{\alpha_2} \quad J(\alpha_1^+, \alpha_2^+) = (\zeta - \alpha_2^+ y(2)) y(1), \alpha_2^+)$$

s.t. \quad L \leq \alpha_2^+ \leq H

Find the extremum by letting the first derivative (with respect to α_2^+) to be zero as follows

$$\frac{\partial}{\partial \alpha_2^+} f((\zeta - \alpha_2^+ y(2)) y(1), \alpha_2^+)$$

$$= -S + 1 + SK_{11}(\zeta y(1) - S\alpha_2^+) - K_{22}\alpha_2^+ - SK_{12}(\zeta y(1) - S\alpha_2^+)$$

$$+ K_{12}\alpha_2^+ + y(2)V_1 - y(2)V_2 = 0$$
By assuming $E_i = \sum_{j=1}^m y^{(j)} \alpha_j K_{ij} + b - y^{(i)}$,

$$\alpha_2^+ = \alpha_2 + \frac{y^{(2)}(E_1 - E_2)}{K_{11} - 2K_{12} + K_{22}}$$

Since α_2^+ should be in the range of $[L, H]$,

$$\alpha_2^+ = \begin{cases}
H, & \alpha_2^+ > H \\
\alpha_2^+, & L \leq \alpha_2^+ \leq H \\
L, & \alpha_2^+ < L
\end{cases}$$
Updating b to verify if the convergence criterion is satisfied

- When $0 < \alpha_1^+ < C$,
 \[b_1^+ = -E_1 - y^{(1)}K_{11}(\alpha_1^+ - \alpha_1) - y^{(2)}K_{21}(\alpha_2^+ - \alpha_2) + b \]

- When $0 < \alpha_2^+ < C$,
 \[b_2^+ = -E_2 - y^{(1)}K_{12}(\alpha_1^+ - \alpha_1) - y^{(2)}K_{22}(\alpha_2^+ - \alpha_2) + b \]

- When $0 < \alpha_1^+ < C$ and $0 < \alpha_2^+ < C$ both hold,
 \[b^+ = b_1^+ = b_2^+ \]

- When α_1^+ and α_2^+ are on the bound (i.e., $\alpha_1 = 0$ or $\alpha_1 = C$ and $\alpha_2 = 0$ or $\alpha_2 = C$), all values between b_1^+ and b_2^+ satisfy the KKT conditions
 \[b^+ = (b_1^+ + b_2^+)/2 \]
Updating E_i

$$E_i^+ = \sum_{j=1}^{2} y^{(j)} \alpha_j^+ K_{ij} + \sum_{j=3}^{m} y^{(j)} \alpha_j^+ K_{ij} + b^+ - y^{(i)}$$
How to choose the target variable (i.e., α_1 and α_2 in our case)?

- Both α_1 and α_2 should violate the KKT conditions
- Since the step size of updating α_2 depends on $|E_1 - E_2|$, a greedy method suggests we should choose the one maximizing $|E_1 - E_2|$
Thanks!

Q & A