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Hyperplane

Separates a n-dimensional space into two half-spaces

Defined by an outward pointing normal vector ω ∈ Rn

Assumption: The hyperplane passes through origin. If not,

have a bias term b; we will then need both ω and b to define it
b > 0 means moving it parallely along ω (b < 0 means in opposite
direction)
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Support Vector Machine

A hyperplane based linear classifier defined by ω and b

Prediction rule: y = sign(ωT x + b)

Given: Training data {(x (i), y (i))}i=1,··· ,m

Goal: Learn ω and b that achieve the maximum margin

For now, assume that entire training data are correctly classified by
(ω, b)

Zero loss on the training examples (non-zero loss later)
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Margin

Hyperplane: ωT x + b = 0, where ω is the normal vector

The margin γ(i) is the signed distance between x (i) and the hyperplane
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Margin (Contd.)

Hyperplane: ωT x + b = 0, where ω is the normal vector

The margin γ(i) is the distance between x (i) and the hyperplane

Now, the margin is signed

If y (i) = 1, γ(i) ≥ 0; otherwise, γ(i) < 0
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Margin (Contd.)

Geometric margin

γ(i) = y (i)
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Margin (Contd.)

Geometric margin

γ(i) = y (i)

((
ω

‖ω‖

)T

x (i) +
b
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Scaling (ω, b) does not change γ(i)
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Margin (Contd.)

Geometric margin γ(i) = y (i)
(

(ω/‖ω‖)T x (i) + b/‖ω‖
)

Scaling (ω, b) does not change γ(i)

With respect to the whole training set, the margin is written as

γ = min
i
γ(i)
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Maximizing The Margin

The hyperplane actually serves as a decision boundary to differentiating
positive labels from negative labels

We make more confident decision if larger margin is given, i.e., the
data sample is further away from the hyperplane

There exist a infinite number of hyperplanes, but which one is the best?

max
ω,b

min
i
{γ(i)}
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Maximizing The Margin (Contd.)

There exist a infinite number of hyperplanes, but which one is the best?

max
ω,b

min
i
{γ(i)}

It is equivalent to

max
γ,ω,b

γ

s.t. γ(i) ≥ γ, ∀i

Since

γ(i) = y (i)

((
ω

‖ω‖

)T

x (i) +
b

‖ω‖

)
the constraint becomes

y (i)(ωT x (i) + b) ≥ γ‖ω‖, ∀i
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Maximizing The Margin (Contd.)

Formally,

max
γ,ω,b

γ

s.t. y (i)(ωT x (i) + b) ≥ γ‖ω‖, ∀i
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Maximizing The Margin (Contd.)

Scaling (ω, b) such that mini{y (i)(ωT x (i) + b)} = 1,

γ = min
i
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Maximizing The Margin (Contd.)

The problem becomes

max
ω,b

1/‖ω‖

s.t. y (i)(ωT x (i) + b) ≥ 1, ∀i
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Support Vector Machine (Primal Form)

Maximizing 1/‖ω‖ is equivalent to minimizing ‖ω‖2 = ωTω

min
ω,b

ωTω

s.t. y (i)(ωT x (i) + b) ≥ 1, ∀i

This is a quadratic programming (QP) problem!

Interior point method
(https://en.wikipedia.org/wiki/Interior-point_method)

Active set method
(https://en.wikipedia.org/wiki/Active_set_method)

Gradient projection method
(http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf)

...

Existing generic QP solvers is of low efficiency, especially in face of a
large training set
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Convex Optimization Review

Optimization Problem

Lagrangian Duality

KKT Conditions

Convex Optimization

S. Boyd and L. Vandenberghe, 2004. Convex Optimization. Cambridge university press.
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Optimization Problems

Considering the following optimization problem

min
ω

f (ω)

s.t. gi (ω) ≤ 0, i = 1, · · · , k
hj(ω) = 0, j = 1, · · · , l

with variable ω ∈ Rn, domain D =
⋂k

i=1 domgi∩
⋂l

j=1 domhj , optimal
value p∗

Objective function f (ω)
k inequality constraints gi (ω) ≤ 0, i = 1, · · · , k
l equality constraints hj(ω) = 0, j = 1, · · · , l
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Lagrangian

Lagrangian: L : Rn × Rk × Rl → R, with domL = D × Rk × Rl

L(ω, α, β) = f (ω) +
k∑

i=1

αigi (ω) +
l∑

j=1

βjhj(ω)

Weighted sum of objective and constraint functions
αi is Lagrange multiplier associated with gi (ω) ≤ 0
βj is Lagrange multiplier associated with hj(ω) = 0
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Lagrange Dual Function

The Lagrange dual function G : Rk × Rl → R

G(α, β) = inf
ω∈D
L(ω, α, β)

= inf
ω∈D

f (ω) +
k∑

i=1

αigi (ω) +
l∑

j=1

βjhj(ω)


G is concave, can be −∞ for some α, β
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The Lower Bounds Property

If α � 0, then G(α, β) ≤ p∗, where p∗ is the optimal value of the
primal problem

Proof: If ω̃ is feasible and α � 0, then

f (ω̃) ≥ L(ω̃, α, β) ≥ inf
ω∈D
L(ω, α, β) = G(α, β)

minimizing over all feasible ω̃ gives p∗ ≥ G(α, β)
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Lagrange Dual Problem

Lagrange dual problem

maxα,β G(α, β)

s.t. α � 0, ∀i = 1, · · · , k

Find the best low bound on p∗, obtained from Lagrange dual function

A convex optimization problem (optimal value denoted by d∗)

α, β are dual feasible if α � 0, (α, β) ∈ dom G and G > −∞
Often simplified by making implicit constraint (α, β) ∈ dom G explicit
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Weak Duality

Weak duality: d∗ ≤ p∗

Always holds
Can be used to find nontrivial lower bounds for difficult problems
Optimal duality gap: p∗ − d∗
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Complementary Slackness

Let ω∗ be a primal optimal point and (α∗, β∗) be a dual optimal point

If strong duality holds, then

α∗i gi (ω
∗) = 0

for ∀i = 1, 2, · · · , k
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Complementary Slackness (Proof)

We have

f (ω∗) = G(α∗, β∗)

= inf
ω

f (ω) +
k∑

i=1

α∗i gi (ω) +
l∑

j=1

β∗j hj(ω)


≤ f (ω∗) +

k∑
i=1

α∗i gi (ω
∗) +

l∑
j=1

β∗j hj(ω
∗) ≤ f (ω∗)

The last two inequalities hold with equality, such that we have

k∑
i=1

α∗i gi (ω
∗) = 0

Since each term, i.e., α∗i gi (ω
∗), is nonpositive, we thus conclude

α∗i gi (ω
∗) = 0, ∀i = 1, 2, · · · , k
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Karush-Kuhn-Tucker (KKT) Conditions

Let ω∗ and (α∗, β∗) by any primal and dual optimal points wither zero
duality gap (i.e., the strong duality holds), the following conditions
should be satisfied

Stationarity: Gradient of Lagrangian with respect to ω vanishes

5f (ω∗) +
k∑

i=1

αi 5 gi (ω
∗) +

l∑
j=1

βj 5 hj(ω
∗) = 0

Primal feasibility

gi (ω
∗) ≤ 0, ∀i = 1, · · · , k

hj(ω
∗) = 0, ∀j = 1, · · · , l

Dual feasibility
α∗i ≥ 0, ∀i = 1, · · · , k

Complementary slackness

α∗i gi (ω
∗) = 0, ∀i = 1, · · · , k
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Convex Optimization Problem

Problem Formulation

min
ω

f (ω)

s.t. gi (ω) ≤ 0, i = 1, · · · , k
Aω − b = 0

f and gi (i = 1, · · · , k) are convex
A is a l × n matrix, b ∈ Rl
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Weak Duality V.s. Strong Duality

Weak duality: d∗ ≤ p∗

Always holds
Can be used to find nontrivial lower bounds for difficult problems

Strong duality: d∗ = p∗

Does not hold in general
(Usually) holds for convex problems
Conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s Constraint Qualification

Strong duality holds for a convex prblem

min
ω

f (ω)

s.t. gi (ω) ≤ 0, i = 1, · · · , k
Aω − b = 0

if it is strictly feasible, i.e.,

∃ω ∈ relintD : gi (ω) < 0, i = 1, · · · ,m,Aω = b
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KKT Conditions for Convex Optimization

For convex optimization problem, the KKT conditions are also sufficient
for the points to be primal and dual optimal

Suppose ω̃, α̃, and β̃ are any points satisfying the following KKT con-
ditions

gi (ω̃) ≤ 0, ∀i = 1, · · · , k
hj(ω̃) = 0, ∀j = 1, · · · , l
α̃i ≥ 0, ∀i = 1, · · · , k
α̃igi (ω̃) = 0, ∀i = 1, · · · , k

∇f (ω̃) +
k∑

i=1

α̃i∇gi (ω̃) +
l∑

j=1

β̃j∇hj(ω̃) = 0

then they are primal and dual optimal with strong duality holding
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Optimal Margin Classifier

Primal (convex) problem formulation

min
ω,b

1

2
‖ω‖2

s.t. y (i)(ωT x (i) + b) ≥ 1, ∀i

The Lagrangian

L(ω, b, α) =
1

2
‖ω‖2 −

m∑
i=1

αi (y
(i)(ωT x (i) + b)− 1)

The Lagrange dual function

G(α) = inf
ω,b
L(ω, b, α)
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Optimal Margin Classifier

Dual problem formulation

max
α

inf
ω,b
L(ω, b, α)

s.t. αi ≥ 0, ∀i

The Lagrangian

L(ω, b, α) =
1

2
‖ω‖2 −

m∑
i=1

αi (y
(i)(ωT x (i) + b)− 1)

The Lagrange dual function

G(α) = inf
ω,b
L(ω, b, α)
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Optimal Margin Classifier (Contd.)

Dual problem formulation

max
α

G(α) = inf
ω,b
L(ω, b, α)

s.t. αi ≥ 0 ∀i
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Optimal Margin Classifier (Contd.)

According to KKT conditions, minimizing L(ω, b, α) over ω and b

5ωL(ω, b, α) = ω −
m∑
i=1

αiy
(i)x (i) = 0 ⇒ ω =

m∑
i=1

αiy
(i)x (i)

∂

∂b
L(ω, b, α) =

m∑
i=1

αiy
(i) = 0

The Lagrange dual function becomes

G(α) =
m∑
i=1

αi −
1

2

m∑
i ,j=1

y (i)y (j)αiαj(x
(i))T x (j)

with
∑m

i=1 αiy
(i) = 0 and αi ≥ 0
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Optimal Margin Classifier (Contd.)

Dual problem formulation

max
α

G(α) =
m∑
i=1

αi −
1

2

m∑
i ,j=1

y (i)y (j)αiαj(x
(i))T x (j)

s.t. αi ≥ 0 ∀i
m∑
i=1

αiy
(i) = 0

It is a convex optimization problem, so the strong duality (p∗ = d∗)
holds and the KKT conditions are respected

Quadratic Programming problem in α

Several off-the-shelf solvers exist to solve such QPs
Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.
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SVM: The Solution

Once we have the α∗,

ω∗ =
m∑
i=1

α∗i y
(i)x (i)

Given ω∗, how to calculate the optimal value of b?
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SVM: The Solution

Since α∗i (y (i)(ω∗T x (i) + b)− 1) = 0, for ∀i , we have

y (i)(ω∗T x (i) + b∗) = 1

for {i : α∗i > 0}
Then, for ∀i such that α∗i > 0, we have

b∗ = y (i) − ω∗T x (i)

For robustness, we calculated the optimal value for b by taking the
average

b∗ =

∑
i :α∗

i >0(y (i) − ω∗T x (i))∑m
i=1 1(α∗i > 0)
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SVM: The Solution (Contd.)

Most αi ’s in the solution are zero (sparse solution)

According to KKT conditions, for the optimal αi ’s,

αi

(
1− y (i)(ωT x (i) + b)

)
= 0

αi is non-zero only if x (i) lies on the one of the two margin boundaries.
i.e., for which y (i)(ωT x (i) + b) = 1
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SVM: The Solution (Contd.)

These data samples are called support vector (i.e., support vectors
“support” the margin boundaries)
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SVM: The Solution (Contd.)

Redefine ω∗

ω∗ =
∑
s∈S

α∗s y
(s)x (s)

where S denotes the indices of the support vectors
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Kernel Methods

Motivation: Linear models (e.g., linear regression, linear SVM etc.)
cannot reflect the nonlinear pattern in the data

Kernels: Make linear model work in nonlinear settings

By mapping data to higher dimensions where it exhibits linear patterns
Apply the linear model in the new input space
Mapping is equivalent to changing the feature representation
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Feature Mapping

Consider the following binary classification problem

Each sample is represented by a single feature x
No linear separator exists for this data
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Feature Mapping (Contd.)

Now map each example as x → {x , x2}
Each example now has two features (“derived” from the old representa-
tion)

Data now becomes linearly separable in the new representation
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Feature Mapping (Contd.)

Another example

Each sample is defined by x = {x1, x2}
No linear separator exists for this data
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Feature Mapping (Contd.)

Now map each example as x = {x1, x2} → z = {x21 ,
√

2x1x2, x
2
2}

Each example now has three features (“derived” from the old represen-
tation)

Data now becomes linearly separable in the new representation

Feng Li (SDU) SVM December 28, 2021 44 / 82



Feature Mapping (Contd.)

Consider the follow feature mapping φ for an example x = {x1, · · · , xn}

φ : x → {x21 , x22 , · · · , x2n , x1x2, x1x2, · · · , x1xn, · · · , xn−1xn}

It is an example of a quadratic mapping

Each new feature uses a pair of the original features
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Feature Mapping (Contd.)

Problem: Mapping usually leads to the number of features blow up!

Computing the mapping itself can be inefficient, especially when the new
space is very high dimensional
Storing and using these mappings in later computations can be expensive
(e.g., we may have to compute inner products in a very high dimensional
space)
Using the mapped representation could be inefficient too

Thankfully, kernels help us avoid both these issues!

The mapping does not have to be explicitly computed
Computations with the mapped features remain efficient
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Kernels as High Dimensional Feature Mapping

Let’s assume we are given a function K (kernel) that takes as inputs x
and z

K (x , z) = (xT z)2

= (x1z1 + x2z2)2

= x21 z
2
1 + x22 z

2
2 + 2x1x2z1z2

= (x21 ,
√

2x1x2, x
2
2 )T (z21 ,

√
2z1z2, z

2
2 )

The above function K implicitly defines a mapping φ to a higher dim.
space

φ(x) = {x21 ,
√

2x1x2, x
2
2}

Simply defining the kernel in a certain way gives a higher dim. mapping
φ

The mapping does not have to be explicitly computed
Computations with the mapped features remain efficient
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Kernels: Formal Definition

Each kernel K has an associated feature mapping φ

φ takes input x ∈ X (input space) and maps it to F (feature space)

Kernel K (x , z) = φ(x)Tφ(z) takes two inputs and gives their similarity
in F space

φ : X → F
K : X × X → R

F needs to be a vector space with a dot product defined upon it

Also called a Hilbert Space

Can just any function be used as a kernel function?

No. It must satisfy Mercer’s Condition
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Mercer’s Condition

For K to be a kernel function

There must exist a Hilbert Space F for which K defines a dot product
The above is true if K is a positive definite function∫ ∫

f (x)K (x , z)f (z)dxdz > 0 (∀f ∈ L2)

for all functions f that are “square integrable”, i.e.,∫ ∞
−∞

f 2(x)dx <∞
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Mercer’s Condition (Contd.)

Let K1 and K2 be two kernel functions then the followings are as well:

Direct sum: K (x , z) = K1(x , z) + K2(x , z)
Scalar product: K (x , z) = αK1(x , z)
Direct product: K (x , z) = K1(x , z)K2(x , z)
Kernels can also be constructed by composing these rules
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The Kernel Matrix

For K to be a kernel function

The kernel function K also defines the Kernel Matrix over the data (also
denoted by K )
Given m samples {x (1), x (2), · · · , x (m)}, the (i , j)-th entry of K is defined
as

Ki,j = K (x (i), x (j)) = φ(x (i))Tφ(x (j))

Ki ,j : Similarity between the i-th and j-th example in the feature space
F
K : m ×m matrix of pairwise similarities between samples in F space

K is a symmetric matrix

K is a positive semi-definite matrix
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Some Examples of Kernels

Linear (trivial) Kernal:
K (x , z) = xT z

Quadratic Kernel

K (x , z) = (xT z)2 or (1 + xT z)2

Polynomial Kernel (of degree d)

K (x , z) = (xT z)d or (1 + xT z)d

Gaussian Kernel

K (x , z) = exp

(
−‖x − z‖2

2σ2

)
Sigmoid Kernel

K (x , z) = tanh(αxT + c)
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Using Kernels

Kernels can turn a linear model into a nonlinear one

Kernel K (x , z) represents a dot product in some high dimensional fea-
ture space F

K (x , z) = (xT z)2 or (1 + xT z)2

Any learning algorithm in which examples only appear as dot products

(x (i)
T
x (j)) can be kernelized (i.e., non-linearlized)

By replacing the x (i)
T
x (j) terms by φ(x (i))Tφ(x (j)) = K (x (i), x (j))

Most learning algorithms are like that

SVM, linear regression, etc.
Many of the unsupervised learning algorithms too can be kernelized (e.g.,
K-means clustering, Principal Component Analysis, etc.)
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Kernelized SVM Training

SVM dual Lagrangian

max
α

m∑
i=1

αi −
1

2

m∑
i ,j=1

y (i)y (j)αiαj < x (i), x (j) >

s.t.

m∑
i=1

αiy
(i) = 0

αi ≥ 0, ∀i
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Kernelized SVM Training (Contd.)

Replacing < x (i), x (j) > by φ(x (i))Tφ(x (j)) = K (x (i), x (j)) = Kij

max
α

m∑
i=1

αi −
1

2

m∑
i ,j=1

y (i)y (j)αiαjKi ,j

s.t.

m∑
i=1

αiy
(i) = 0

αi ≥ 0, ∀i

SVM now learns a linear separator in the kernel defined feature space
F

This corresponds to a non-linear separator in the original space X
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Kernelized SVM Prediction

Define the decision boundary ω∗Tφ(x) + b∗ in the higher-dimensional
feature space

ω∗ =
∑

i :α∗
i >0

α∗i y
(i)φ(x (i))

b∗ = y (i) − ω∗Tφ(x (i))

= y (i) −
∑

j :α∗
j >0

α∗j y
(j)φT (x (j))φ(x (i))

= y (i) −
∑

j :α∗
j >0

α∗j y
(j)Kij
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Kernelized SVM Prediction (Contd.)

Given a test data sample x

y = sign

 ∑
i :α∗

i >0

α∗i y
(i)φ(x (i))

T
φ(x) + b∗


= sign

 ∑
i :α∗

i >0

α∗i y
(i)K (x (i), x) + b∗


Kernelized SVM needs the support vectors at the test time (except
when you can write φ(x) as an explicit, reasonably-sized vector)

In the unkernelized version ω =
∑

i :α∗
i >0 α

∗
i y

(i)x (i)+b∗ can be computed

and stored as a n × 1 vector, so the support vectors need not be stored
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Soft-Margin SVM

We allow some training examples to be misclassified, and some training
examples to fall within the margin region
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Soft-Margin SVM (Contd.)

Recall that, for the separable case (training loss = 0), the constraints
were

y (i)(ωT x (i) + b) ≥ 1 for ∀i

For the non-separable case, we relax the above constraints as:

y (i)(ωT x (i) + b) ≥ 1− ξi for ∀i

ξi is called slack variable

Non-separable case

We will allow misclassified training samples, but we want the number
of such samples to be minimized, by minimizing the sum of the slack
variables

∑
i ξi
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Soft-Margin SVM (Contd.)

Reformulating the SVM problem by introducing slack variables ξi

min
ω,b,ξ

1

2
‖ω‖2 + C

m∑
i=1

ξi

s.t. y (i)(ωT x (i) + b) ≥ 1− ξi , ∀i = 1, · · · ,m
ξi ≥ 0, ∀i = 1, · · · ,m

The parameter C controls the relative weighting between the following
two goals

Small C ⇒ ‖ω‖2/2 dominates ⇒ prefer large margins

but allow potential large number of misclassified training examples

Large C ⇒ C
∑m

i=1 ξi dominates⇒ prefer small number of misclassified
examples

at the expense of having a small margin

Feng Li (SDU) SVM December 28, 2021 60 / 82



Soft-Margin SVM (Contd.)

Lagrangian

L(ω, b, ξ, α, r) =
1

2
ωTω+C

m∑
i=1

ξi−
m∑
i=1

αi [y
(i)(ωT x (i) +b)−1+ξi ]−

m∑
i=1

riξi

KKT conditions (the optimal values of ω, b, ξ, α, and r should satisfy the
following conditions)

5ωL(ω, b, ξ, α, r) = 0 ⇒ ω∗ =
∑m

i=1 α
∗
i y

(i)x (i)

5bL(ω, b, ξ, α, r) = 0 ⇒
∑m

i=1 α
∗
i y

(i) = 0

5ξiL(ω, b, ξ, α, r) = 0 ⇒ α∗i + r∗i = C , for ∀i
α∗i , r

∗
i , ξ
∗
i ≥ 0, for ∀i

y (i)(ω∗T x (i) + b∗) + ξ∗i − 1 ≥ 0, for ∀i
α∗i (y (i)(ω∗x (i) + b∗) + ξ∗i − 1) = 0, for ∀i
r∗i ξ
∗
i = 0, for ∀i
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Soft-Margin SVM (Contd.)

Dual problem

max
α

J (α) =
m∑
i=1

αi −
1

2

m∑
i ,j=1

y (i)y (j)αiαj < x (i), x (j) >

s.t. 0 ≤ αi ≤ C , ∀i = 1, · · · ,m
m∑
i=1

αiy
(i) = 0

Use existing QP solvers to address the above optimization problem
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Soft-Margin SVM (Contd.)

Optimal values for αi (i = 1, · · · ,m)

How to calculate the optimal values of ω and b?

Use KKT conditions !
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Soft-Margin SVM (Contd.)

By resolving the above optimization problem, we get the optimal value
of αi (i = 1, · · · ,m)

How to calculate the optimal values of ω and b?

According to the KKT conditions, we have

ω∗ =
m∑
i=1

α∗i y
(i)x (i)

How about b∗?
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Soft-Margin SVM (Contd.)

Since α∗i + r∗i = C , for ∀i , we have

r∗i = C − α∗i , ∀i

Since r∗i ξ
∗
i = 0, for ∀i , we have

(C − α∗i )ξ∗i = 0, ∀i

For ∀i such that α∗i 6= C , we have ξi = 0, and thus

α∗i (y (i)(ω∗T x (i) + b∗)− 1) = 0
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Soft-Margin SVM (Contd.)

For ∀i such that 0 < α∗i < C , we have

y (i)(ω∗T x (i) + b∗) = 1

Hence,
ω∗T x (i) + b∗ = y (i)

for ∀i such that 0 < α∗i < C

We finally calculate b as

b∗ =

∑
i :0<α∗

i <C (y (i) − ω∗T x (i))∑m
i=1 1(0 < α∗i < C )
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Soft-Margin SVM (Contd.)

Soft-margin SVM classifier

y = sign
(
ω∗T x + b∗

)
= sign

(
m∑
i=1

α∗i y
(i) < x (i), x > +b∗

)
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Soft-Margin SVM (Contd.)

Some useful corollaries according to the KKT conditions

When α∗i = 0, y (i)(ω∗T x (i) + b∗) ≥ 1

When α∗i = C , y (i)(ω∗T x (i) + b∗) ≤ 1

When 0 < α∗i < C , y (i)(ω∗T x (i) + b∗) = 1

For ∀i = 1, · · · ,m, x (i) is

correctly classified if α∗i = 0
misclassified if α∗i = C
a support vector if 0 < α∗i < C

Feng Li (SDU) SVM December 28, 2021 68 / 82



Soft-Margin SVM (Contd.)

Corollary

For ∀i = 1, 2, · · · ,m, when α∗i = 0, y (i)(ω∗T x (i) + b∗) ≥ 1.

Proof.

∵ α∗i = 0, α∗i + r∗i = C

∴ r∗i = C

∵ r∗i ξ
∗
i = 0

∴ ξ∗i = 0

∵ y (i)(ω∗T x (i) + b∗) + ξ∗i − 1 ≥ 0

∴ y (i)(ω∗T x (i) + b∗) ≥ 1
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Soft-Margin SVM (Contd.)

Corollary

For ∀i = 1, 2, · · · ,m, when α∗i = C, y (i)(ω∗T x (i) + b∗) ≤ 1

Proof.

∵ α∗i = C , α∗i (y (i)(ω∗T x (i) + b∗) + ξ∗i − 1) = 0

∴ y (i)(ω∗T x (i) + b∗) + ξ∗i − 1 = 0

∵ ξ∗i ≥ 0

∴ y (i)(ω∗T x (i) + b∗) = 1− ξ∗ ≤ 1
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Soft-Margin SVM (Contd.)

Corollary

For ∀i = 1, 2, · · · ,m, when 0 < α∗i < C, y (i)(ω∗T x (i) + b∗) = 1.

Proof.

∵ 0 < α∗i < C , α∗i + r∗i = C

∴ 0 < r∗i < C

∵ r∗i ξ
∗
i = 0

∴ ξ∗i = 0

∵ 0 < α∗i < C , α∗i (y (i)(ω∗T x (i) + b) + ξ∗i − 1) = 0

∴ y (i)(ω∗T x (i) + b∗) + ξ∗i − 1 = 0

∴ y (i)(ω∗T x (i) + b∗) = 1
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Coordinate Ascent Algorithm

Consider the following unconstrained optimization problem

max
α
J (α1, α2, · · · , αm)

Repeat the following step until convergence
For each i , αi = arg maxαi J (α1, · · · , αi−1, αi , αi+1, · · · , αm)

For some αi , fix the other variables and re-optimize J (α) with respect
to αi
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Sequential Minimal Optimization (SMO) Algorithm

Coordinate ascent algorithm cannot be applied since
∑m

i=0 αiy
(i) = 0

The basic idea of SMO

Algorithm 1 SMO algorithm

1: Given a starting point α ∈ dom J
2: repeat
3: Select some pair of αi and αj to update next (using a heuristic that

tries to pick the two α’s);
4: Re-optimize J (α) with respect to αi and αj , while holding all the

other αk ’s (k 6= i , j) fixed
5: until convergence criterion is satisfied
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SMO Algorithm (Contd.)

Convergence criterion

m∑
i=1

αiy
(i) = 0, 0 ≤ αi ≤ C , ∀i = 1, · · · ,m

y (i)

 m∑
j=1

αjy
(j) < x (i), x (j) > +b

 =


≥ 1, ∀i : αi = 0

= 1, ∀i : 0 < αi < C

≤ 1, ∀i : αi = C
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SMO Algorithm (Contd.)

Take α1 and α2 for example

J (α+
1 , α

+
2 ) = α+

1 + α+
2 −

1

2
K11α

+
1
2 − 1

2
K22α

+
2
2 − SK12α

+
1 α

+
2

−y (1)V1α
+
1 − y (2)V2α

+
2 + Ψ

where 
Kij =< x (i), x (j) >

S = y (1)y (2)

Ψ =
∑m

i=3 αi − 1
2

∑m
i=3

∑m
j=3 y

(i)y (j)αiαjKij

Vi =
∑m

j=3 y
(j)αjKij
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SMO Algorithm (Contd.)

Define

ζ = α+
1 y

(1) + α+
2 y

(2) = −
m∑
i=3

αiy
(i) = α1y

(1) + α2y
(2)

Lower bound L and upper bound H for α+
2 :

When y (1)y (2) = −1, H = min{C ,C+α2−α1} and L = max{0, α2−α1}
When y (1)y (2) = 1, H = min{C , α2 +α1} and L = max{0, α1 +α2−C}

𝛼!"

𝛼#"

𝐶0

𝐶

𝛼# − 𝛼!

𝐶 + 𝛼# − 𝛼!

(a) y (1)y (2) = −1

𝛼!"

𝛼#"

𝐶0

𝐶

𝛼! +𝛼# −𝐶

𝛼! +𝛼!

(b) y (1)y (2) = 1
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SMO Algorithm (Contd.)

Address the following optimization problem

maxα2 J (α+
1 = (ζ − α+

2 y
(2))y (1), α+

2 )

s.t. L ≤ α+
2 ≤ H

Find the extremum by letting the first derivative (with respect to α+
2 )

to be zero as follows

∂

∂α+
2

f ((ζ − α+
2 y

(2))y (1), α+
2 )

= −S + 1 + SK11(ζy (1) − Sα+
2 )− K22α

+
2 − SK12(ζy (1) − Sα+

2 )

+K12α
+
2 + y (2)V1 − y (2)V2 = 0
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SMO Algorithm (Contd.)

By assuming Ei =
∑m

j=1 y
(j)αjKij + b − y (i),

α+
2 = α2 +

y (2)(E1 − E2)

K11 − 2K12 + K22

Since α+
2 should be in the range of [L,H],

α+
2 =


H, α+

2 > H

α+
2 , L ≤ α+

2 ≤ H

L, α+
2 < L
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SMO Algorithm (Contd.)

Updating b to verify if the convergence criterion is satisfied

When 0 < α+
1 < C ,

b+1 = −E1 − y (1)K11(α+
1 − α1)− y (2)K21(α+

2 − α2) + b

When 0 < α+
2 < C ,

b+2 = −E2 − y (1)K12(α+
1 − α1)− y (2)K22(α+

2 − α2) + b

when 0 < α+
1 < C and 0 < α+

2 < C both hold,

b+ = b+1 = b+2

When α+
1 and α+

2 are on the bound (i.e., α1 = 0 or α1 = C and α2 = 0
or α2 = C ), all values between b+1 and b+2 satisfy the KKT conditions

b+ = (b+1 + b+2 )/2
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SMO Algorithm (Contd.)

Updating Ei

E+
i =

2∑
j=1

y (j)α+
j Kij +

m∑
j=3

y (j)α+
j Kij + b+ − y (i)
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SMO Algorithm (Contd.)

How to choose the target variable (i.e., α1 and α2 in our case)?

Both α1 and α2 should violate the KKT conditions
Since the step size of updating α2 depends on |E1−E2|, a greedy method
suggests we should choose the one maximizing |E1 − E2|
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Thanks!

Q & A
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