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© SVM: A Primal Form

© Convex Optimization Review

© The Lagrange Dual Problem of SVM
Q@ SVM with Kernels

© Soft-Margin SVM

@ Sequential Minimal Optimization (SMO) Algorithm
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Hyperplane

@ Separates a n-dimensional space into two half-spaces

y = sign(w’x + b)

X2
+y=1
2}

wTx+b>0
w'x+b<0

X1
—y=-1

w’x+b=0

@ Defined by an outward pointing normal vector w € R”
@ Assumption: The hyperplane passes through origin. If not,

o have a bias term b; we will then need both w and b to define it
e b > 0 means moving it parallely along w (b < 0 means in opposite
direction)
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Support Vector Machine

@ A hyperplane based linear classifier defined by w and b
e Prediction rule: y = sign(w’x + b)

y = sign(w’x + b)

X2
+y=1
13)

w'x+b>0
w'x+b<0

X1
—y=-1

wTx+b=0

o Given: Training data {(x(),y()};_y .
@ Goal: Learn w and b that achieve the maximum margin

@ For now, assume that entire training data are correctly classified by
(w, b)

e Zero loss on the training examples (non-zero loss later)
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@ Hyperplane: w”x + b =0, where w is the normal vector

o The margin v()) is the signed distance between x() and the hyperplane
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Margin (Contd.)

@ Hyperplane: w”x + b =0, where w is the normal vector

e The margin () is the distance between x() and the hyperplane

o Now, the margin is signed
o If y() =1 ~() > 0; otherwise, () <0
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Margin (Contd.)

o Geometric margin
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Margin (Contd.)

o Geometric margin

v ool w\ b
NONNG <> NS
[Jwl] [Jwl]

@ Scaling (w, b) does not change v()
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Margin (Contd.)

o Geometric margin 4() = y() ((w/HwH) )+ b/||w||)

@ Scaling (w, b) does not change v()

@ With respect to the whole training set, the margin is written as

7 = min~{")
1
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Maximizing The Margin

@ The hyperplane actually serves as a decision boundary to differentiating
positive labels from negative labels

@ We make more confident decision if larger margin is given, i.e., the
data sample is further away from the hyperplane

@ There exist a infinite number of hyperplanes, but which one is the best?

max min{~()}

w,b i
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Maximizing The Margin (Contd.)

@ There exist a infinite number of hyperplanes, but which one is the best?

max min{~(}

w,b i

@ It is equivalent to
max
v¥,w,b 7
s.t. 'y(i) >, Vi

. . w \T . b
NONNG () NS
[[wl] [Jwl]

the constraint becomes

@ Since

YW XD + b) > Al|wl]|, Vi
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Maximizing The Margin (Contd.)

o Formally,

max -y
v,w,b

st yO(wT™xD 4 b) > y|w||, Vi

X1

oTx+b =yl

] ~ T =
N w'x+b=0
@ x +b =yl
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Maximizing The Margin (Contd.)

e Scaling (w, b) such that min;{y()(wTx(") + b)} =1,

a5 )

Scaling w and b such that

° min;{y®(ox® + b)} =1
°

S °
y = min{y©}

—mm{y”<(uwu) ¢ II:;IIX
AN

SoTx+b =ylloll

o Tx+b=0
Wx+b=—ylol 7
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Maximizing The Margin (Contd.)

@ The problem becomes
1
max /llwl]
s.t. y(i)(wa(i) +b) > 1,Vi

Scaling w and b such that

. min;{y®(ox® +b)} =1

S °
= min{y®
¥ miln{y 0}

T b
= minly® [ (-2} x® 4 2
"’f‘“{y <(||w||)x +||w||>}

Ssolx+b =yl

[¢] ~ T -
N +b=0 N
o'x+b=—ylol " Wix4b=1
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Support Vector Machine (Primal Form)

e Maximizing 1/||w|| is equivalent to minimizing ||w|]?> = w'w
min w'w
w,b

sty x4 p) > 1,vi

e This is a quadratic programming (QP) problem!
e Interior point method

(https://en.wikipedia.org/wiki/Interior-point_method)
o Active set method
(https://en.wikipedia.org/wiki/Active_set_method)
o Gradient projection method

(http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf)

o ...
o Existing generic QP solvers is of low efficiency, especially in face of a
large training set
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https://en.wikipedia.org/wiki/Interior-point_method
https://en.wikipedia.org/wiki/Active_set_method
http://www.ifp.illinois.edu/~angelia/L13_constrained_gradient.pdf

Convex Optimization Review

Optimization Problem
Lagrangian Duality
KKT Conditions

Convex Optimization

S. Boyd and L. Vandenberghe, 2004. Convex Optimization. Cambridge university press.
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Optimization Problems

o Considering the following optimization problem

min  f(w)
s.it. gilw)<0,i=1,--- ,k
hi(w)=10,j=1,---,/

with variable w € R”, domain D = ﬂle domg,-ﬁﬂjl-:1 domh;, optimal

value p*
o Objective function f(w)
o k inequality constraints gj(w) <0,i=1,---  k
o [ equality constraints hj(w) =0,/ =1,---,/
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e Lagrangian: £:R" x Rk x R — R, with domL = D x R¥ x R/

/
L(w, o, B) = f(w +Za,g, )+ Bihj(w)
j=1

o Weighted sum of objective and constraint functions
e «; is Lagrange multiplier associated with gi(w) <0
e [ is Lagrange multiplier associated with hj(w) =0
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Lagrange Dual Function

@ The Lagrange dual function G : Rk x R/ - R

g(a,ﬂ) == Jgfp[’(w’a,ﬁ)
k !
= inf flw)+ Y aigiw) + Y Bihi(w)
i=1 j=1

@ G is concave, can be —oo for some «, 3
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The Lower Bounds Property

o If a = 0, then G(a,B) < p*, where p* is the optimal value of the
primal problem

@ Proof: If & is feasible and « = 0, then
(&) = £(3,0,8) = inf £(w,,6) = G(a, )
we

minimizing over all feasible & gives p* > G(«, 3)
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Lagrange Dual Problem

Lagrange dual problem

maXey, 3 g(avﬁ)
st. a=0, Vi=1,--,k

Find the best low bound on p*, obtained from Lagrange dual function
A convex optimization problem (optimal value denoted by d*)
«, [ are dual feasible if &« = 0, (o, ) € dom G and G > —o0
Often simplified by making implicit constraint (a, ) € dom G explicit
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Weak Duality

o Weak duality: d* < p*
o Always holds
o Can be used to find nontrivial lower bounds for difficult problems
e Optimal duality gap: p* — d*
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Complementary Slackness

@ Let w* be a primal optimal point and (a*, 5*) be a dual optimal point

@ If strong duality holds, then
a;gi(w*) =0

forVi=1,2,--- k
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Complementary Slackness (Proof)

@ We have

flw") = G(a",57)

/
= |nf f ‘l‘za g, +Zﬁj*hj(w)

< f(w*)+Za;‘g,- +Zﬂ*h ") < f(w")
i=1
@ The last two inequalities hold with equallty, such that we have
k
> atgi(w*) =0
i=1

@ Since each term, i.e., afgj(w*), is nonpositive, we thus conclude

ajgi(w) =0, Vi=1,2,-- ,k
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Karush-Kuhn-Tucker (KKT) Conditions

e Let w* and (a*, 8*) by any primal and dual optimal points wither zero
duality gap (i.e., the strong duality holds), the following conditions
should be satisfied

e Stationarity: Gradient of Lagrangian with respect to w vanishes
k /
vi(w) + Za,- v gi(w*) + Zﬁj v hj(w*) =0
i=1 j=1
e Primal feasibility
gilw)<0,Vi=1,--- k
hi(w*)=0, Vj=1,---,1

e Dual feasibility
af >0, Vi=1,-- k

o Complementary slackness

afgi(w)=0,Vi=1--- k
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Convex Optimization Problem

@ Problem Formulation

min  f(w)
w
s.it. gi(w)<0,i=1,---,k
Av—-b=0
o fand g (i=1,---,k) are convex

o Aisalx nmatrix, be R/
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Weak Duality V.s. Strong Duality

o Weak duality: d* < p*
o Always holds
o Can be used to find nontrivial lower bounds for difficult problems
@ Strong duality: d* = p*
e Does not hold in general
o (Usually) holds for convex problems
o Conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater's Constraint Qualification

@ Strong duality holds for a convex prblem

min  f(w)
st giw)<0,i=1,--- k
Av—b=0

if it is strictly feasible, i.e.,

Jw e relintD : gj(w) <0,i=1,--- ,mAw=0>b
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KKT Conditions for Convex Optimization

@ For convex optimization problem, the KKT conditions are also sufficient
for the points to be primal and dual optimal

e Suppose w, a, and /5 are any points satisfying the following KKT con-
ditions
g,'((,«NJ) <0,Vi=1,---,k
hj(w) =0, Vj=1,---,1
& >0, Vi=1,-,k
&;g,-(o?) :0, Vi = 1,~~~ ,k

k !
V@) + Y aive@)+ Y BiVhi(@) =0
i=1 j=1

then they are primal and dual optimal with strong duality holding
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Optimal Margin Classifier

@ Primal (convex) problem formulation

1
min §||cu||2
s.t. y(i)(wTX(i) +b)>1, Vi

@ The Lagrangian
L(w, b,a) = |w||2 Za wTx() 4 p) — 1)

@ The Lagrange dual function

G(a) = inf L(w, b, @)

w,b
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Optimal Margin Classifier

@ Dual problem formulation
max inf L(w, b, @)
« w,b
s.t. «a; >0, Vi

@ The Lagrangian
L(w, b,a) = Hw||2 Za, wTx() 4 p) — 1)

@ The Lagrange dual function

G(a) = inf L(w, b, @)

w,b
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Optimal Margin Classifier (Contd.)

@ Dual problem formulation
max G(a) = inZE(w, b, )

s.t. ;>0 Vi
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Optimal Margin Classifier (Contd.)

@ According to KKT conditions, minimizing £(w, b, ) over w and b

Vwﬁ(w, b, Oé) =W — Zaiy(i)x(i) = 0 = w= Zaiy(i)X(i)
i=1 i=1

88b Zay()—O

@ The Lagrange dual function becomes

G(a) = Z _,Zy()maa RONNG

i=1 ij=1

with -7, aiy) =0and a; >0
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Optimal Margin Classifier (Contd.)

@ Dual problem formulation

max G(a) = Za,—ny() Wea;(xD)Tx0)

ij=1
s.t. ;>0 V/

i Oéiy(i) =
i=1

e It is a convex optimization problem, so the strong duality (p* = d*)
holds and the KKT conditions are respected
@ Quadratic Programming problem in «

e Several off-the-shelf solvers exist to solve such QPs
o Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.
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SVM: The Solution

@ Once we have the o,

m
W= gy Ox)
i=1

@ Given w*, how to calculate the optimal value of b?
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SVM: The Solution

o Since a*(y()(w*Tx() 4 b) — 1) = 0, for Vi, we have
y(i)(w*Tx(i) + b*) -1

for {i: af >0}
@ Then, for Vi such that o > 0, we have

b* = y(l) _ W*Tx(i)
@ For robustness, we calculated the optimal value for b by taking the

average ) )
Zi:a?‘>0(y(’) - w* TX(’))

b* =
> %1 1af > 0)
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SVM: The Solution

@ Most «;'s in the solution are zero (sparse solution)
o According to KKT conditions, for the optimal «;'s,

a; (1 — vy (W + b)) =0

o «; is non-zero only if x() lies on the one of the two margin boundaries.
i.e., for which y((wTx®) + p) =1

wx+b=1
1 1 e ’
class + o /
wWx+b>=1 P .. e , wWx+b=-1
o / /
) e O ‘@
/
® /
[
[ ]
[ I |
e ]
/ B BB
/
ya L] class -1
WX +b<=-1
]
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SVM: The Solution (Contd.)

@ These data samples are called support vector (i.e., support vectors
“support” the margin boundaries)

wW'x+b=1
| 1 ® !
class + ) /
Wix+b>=1 e .. @ / wx+b=-1
o / /
() [ o /.
/
® /
/ [ .|
()
B B
[}
/ E B B
/
L class -1
/
WX+b<=-1
[ |
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he Solution

@ Redefine w*
Wt = Z a:y(S)X(S)

seS

where S denotes the indices of the support vectors

wix+b=1
/
class +1 () 7/
wWx+b>=1 ... e wix+b=-1
/ ’
[ ] [ ] (-4 ’
, A
® ’
[ I
[ ]
[
[
’ LI
’
B class-1
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Kernel Methods

@ Motivation: Linear models (e.g., linear regression, linear SVM etc.)
cannot reflect the nonlinear pattern in the data

y 2 =_B
o°°o® .-l:l l®
o ° L L
S o I....Il
> m ® .

o Kernels: Make linear model work in nonlinear settings
e By mapping data to higher dimensions where it exhibits linear patterns
o Apply the linear model in the new input space
e Mapping is equivalent to changing the feature representation

Feng Li (SDU) December 28, 2021 40/82



Feature Mapping

@ Consider the following binary classification problem

S 2 2 2 m a2 m o oo m R amn ambe

e Each sample is represented by a single feature x
o No linear separator exists for this data
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Feature Mapping (Contd.)

@ Now map each example as x — {x, x?}
e Each example now has two features (“derived” from the old representa-
tion)
@ Data now becomes linearly separable in the new representation

x?
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ature Mapping (Contd.)

@ Another example

e Each sample is defined by x = {x1, x}
o No linear separator exists for this data
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ature Mapping (Contd.)

o Now map each example as x = {x1, %} — z = {x?,V2x1x0, X3}
e Each example now has three features ( “derived” from the old represen-
tation)

@ Data now becomes linearly separable in the new representation

z, X
X x
\\ x x
1
N
’ X
s \\\ b
’
/ s X X X
’ \\ x
,' L So x
’
’ L] L4 \\\
s ele .
/ ode o AN
’ ° \
/ v —=
/e z,
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Feature Mapping (Contd.)

e Consider the follow feature mapping ¢ for an example x = {x1, -+ , X}
: 2 .2 2
(Z) X = {X17X27“' s Xy X1X2, X1 X2, ++ , X1 Xp,y * ** 7Xn—an}

@ It is an example of a quadratic mapping
e Each new feature uses a pair of the original features
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Feature Mapping (Contd.)

@ Problem: Mapping usually leads to the number of features blow up!

e Computing the mapping itself can be inefficient, especially when the new
space is very high dimensional
e Storing and using these mappings in later computations can be expensive
(e.g., we may have to compute inner products in a very high dimensional
space)
e Using the mapped representation could be inefficient too
@ Thankfully, kernels help us avoid both these issues!

e The mapping does not have to be explicitly computed
o Computations with the mapped features remain efficient
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Kernels as High Dimensional Feature Mapping

@ Let's assume we are given a function K (kernel) that takes as inputs x
and z

K(x,z) = (x"z)?
= (az +x2)’
= Xz} 4 X325 + 2x1x0212
= (F,V2x1x0,x3) T (22, V22120, 23)

@ The above function K implicitly defines a mapping ¢ to a higher dim.
space

¢(X) = {X127 \[2X1X2’X22}

@ Simply defining the kernel in a certain way gives a higher dim. mapping
¢
e The mapping does not have to be explicitly computed
o Computations with the mapped features remain efficient
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Kernels: Formal Definition

@ Each kernel K has an associated feature mapping ¢
@ ¢ takes input x € X’ (input space) and maps it to F (feature space)

o Kernel K(x,z) = ¢(x) " ¢(z) takes two inputs and gives their similarity
in F space

o: X > F
K: XxX—=R

@ F needs to be a vector space with a dot product defined upon it
o Also called a Hilbert Space

@ Can just any function be used as a kernel function?
e No. It must satisfy Mercer's Condition
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Mercer's Condition

@ For K to be a kernel function

e There must exist a Hilbert Space F for which K defines a dot product
e The above is true if K is a positive definite function

//f(x)K(x,Z)f(z)dxdz >0 (Vfely)

for all functions f that are “square integrable”, i.e.,

/ f2(x)dx < oo
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Mercer's Condition (Contd.)

o Let K1 and K> be two kernel functions then the followings are as well:

Direct sum: K(x,z) = Ki(x,z) + Ka(x, z)

Scalar product: K(x,z) = aKi(x, z)

Direct product: K(x,z) = Ki(x, z)Ka(x, z)

Kernels can also be constructed by composing these rules
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The Kernel Matrix

@ For K to be a kernel function

o The kernel function K also defines the Kernel Matrix over the data (also
denoted by K)
o Given msamples {x(M) x(?) ... x(M1 the (i, j)-th entry of K is defined
as
Kij= K(x%, x) = p(xN) T p(x1))
e K;j: Similarity between the i-th and j-th example in the feature space
f
@ K: m x m matrix of pairwise similarities between samples in F space
@ K is a symmetric matrix

@ K is a positive semi-definite matrix
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Some Examples of Kernels

o Linear (trivial) Kernal:
K(x,z) =x"z

e Quadratic Kernel

K(x,z) = (xT2)? or (1+xTz)?
@ Polynomial Kernel (of degree d)

K(x,z) = (x"2)? or (1+x"z)?

@ Gaussian Kernel

202

K(x,z) = exp <_HX_ZH2>

@ Sigmoid Kernel
K(x,z) = tanh(ax” + ¢c)
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Using Kernels

@ Kernels can turn a linear model into a nonlinear one
e Kernel K(x, z) represents a dot product in some high dimensional fea-
ture space F
K(x,z) = (x"2)? or (14 x'z)?
@ Any learning algorithm in which examples only appear as dot products
NT . . . .
(x() " xU)) can be kernelized (i.e., non-linearlized)
o By replacing the x() " xU) terms by d(xNTP(xV) = K(x) xU))
@ Most learning algorithms are like that

e SVM, linear regression, etc.
e Many of the unsupervised learning algorithms too can be kernelized (e.g.,
K-means clustering, Principal Component Analysis, etc.)
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Kernelized SVM Training

@ SVM dual Lagrangian

max Za,—ny() (f)aoz <x() xU) >

ij=1

s.t. Za;y(i) =0
i=1

a; >0, Vi
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Kernelized SVM Training (Contd.)

o Replacing < x(), xU) > by ¢(xMN)Te(x0)) = K(x(), x0)) = K

max Za,—ny y ozaj i

ij=1
Z aiy =0
i=1
a; >0, Vi

@ SVM now learns a linear separator in the kernel defined feature space
f

o This corresponds to a non-linear separator in the original space X
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Kernelized SVM Prediction

@ Define the decision boundary w* Tgi)(x) + b* in the higher-dimensional
feature space

W= 3 ary ()
iray>0
bt = y(i)_w*T (X(I))
= yD— 3" aryWeT (x0)p(x1)
j:oz]-‘>0

=y _ Z Oé;,ky(j)Kij

PR
Jie; >0

Feng Li (SDU) December 28, 2021 56 /82



Kernelized SVM Prediction (Contd.)

@ Given a test data sample x

. * (7 i T *
y = sign| > aiyDe(x) ¢(x)+b

i:af >0

= sign Z ot yDK(xD x) + b*

;>0

o Kernelized SVM needs the support vectors at the test time (except
when you can write ¢(x) as an explicit, reasonably-sized vector)

o In the unkernelized version w = 3", ., afyDx{)+b* can be computed
and stored as a n x 1 vector, so the support vectors need not be stored
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Soft-Margin SVM

o We allow some training examples to be misclassified, and some training
examples to fall within the margin region

) .‘Z// slack

[
class +1 e o
® o
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Soft-Margin SVM (Contd.)

@ Recall that, for the separable case (training loss = 0), the constraints
were
Y (wTxD 4 by >1 for Vi
@ For the non-separable case, we relax the above constraints as:

y (WX 4 by >1—¢& for Vi

o &; is called slack variable

@ Non-separable case
o We will allow misclassified training samples, but we want the number
of such samples to be minimized, by minimizing the sum of the slack

variables ). &;
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Soft-Margin SVM (Contd.)

@ Reformulating the SVM problem by introducing slack variables &;

10 *
min  —||lw||* + C ;
i gl e e

st yDWTxD4p)y>1-¢, Vi=1,---.m
§=>0, Vi=1,---,m

@ The parameter C controls the relative weighting between the following
two goals
o Small C = ||w||?/2 dominates = prefer large margins
@ but allow potential large number of misclassified training examples

o Large C = CY_", & dominates = prefer small number of misclassified
examples

@ at the expense of having a small margin
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Soft-Margin SVM (Contd.)

@ Lagrangian

m

ﬁ(w,b,f,a,r) w w_’_CZ'SI Zal[y w X +b) 1+£i]_zri§i

i=1 i=1

@ KKT conditions (the optimal values of w, b, &, «, and r should satisfy the
following conditions)
o Vul(w,b,&a,r)=0 = w*= Z:"la*y(i)x(i)
o Vpl(w, b, a,r)=0 = ST afyl) =0
o Vel(w, b, &,a,r)=0 = af+rf=C, forVi
o af,rf,&f >0, for Vi
o y(w*Txt) 4 b*) 4 & —1>0, for Vi
o af(yD(wx) 4+ b*) + & —1) =0, for Vi
o & =0, for Vi
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Soft-Margin SVM (Contd.)

@ Dual problem

«

max J(a) = Za; - % Z yIyWaja; < X0, x0) >
i=1

ij=1
st. 0<o;<C, Vi=1l,---,m

i aiy) =0
i—1

@ Use existing QP solvers to address the above optimization problem

Feng Li (SDU) December 28, 2021 62 /82



Soft-Margin SVM (Contd.)

e Optimal values for o (i=1,---,m)
@ How to calculate the optimal values of w and b?
o Use KKT conditions !
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Soft-Margin SVM (Contd.)

@ By resolving the above optimization problem, we get the optimal value
ofaj (i=1,---,m)
@ How to calculate the optimal values of w and b?
o According to the KKT conditions, we have

w* —Za* (x

e How about b*?
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Soft-Margin SVM (Contd.)

@ Since o + rf = C, for Vi, we have
rf=C—af, Vi
@ Since r¢F =0, for Vi, we have
(C—al)e =0, Vi
@ For Vi such that aF # C, we have §; = 0, and thus

A (YD XD 4 b) 1) =0
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Soft-Margin SVM (Contd.)

@ For Vi such that 0 < af < C, we have
y(i)(w*Tx(i) + b*) -1
@ Hence, ' '
w* TX(I) + b* = y(l)
for Vi such that 0 < af < C

@ We finally calculate b as

Zi:o<a7<c(y(i) —w*Tx()

b* =
ST, 1(0<af < C)

Feng Li (SDU) December 28, 2021 66 /82



Soft-Margin SVM (Contd.)

@ Soft-margin SVM classifier

y = sign (w* Tx+ b*)

m
= sign (Z afyD < x(0) x> —i—b*)

i=1
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Soft-Margin SVM (Contd.)

@ Some useful corollaries according to the KKT conditions
o When o =0, y(w*Tx() 4 p*) > 1
o When o = C, yD(w*Tx) 4+ p*) < 1
o When 0 < af < C, yD(w*Tx() 4+ b*) =1
e ForVi=1,---,m xis
o correctly classified if af =0
e misclassified if af = C
e a support vector if 0 < af < C
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Soft-Margin SVM (Contd.)

Corollary

ForVi=1,2,---,m, when af = 0, y((w*Tx() 4 p*) > 1.

o =007+ =C
r,'* =@

g =0

26 =0

.'.y(i)(w*Tx(i) + b*) >1

Ol

v
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Soft-Margin SVM (Contd.)

ForVi=1,2,---,m, when o} = C, yD(w* Tx) 4 p*) < 1

vaf =G, af (Y XD+ b+ -1) =0
y(i)(w*Tx(i) + b*) + 51* —1=0
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Soft-Margin SVM (Contd.)

Corollary

ForVi=1,2,---,m, when 0 < o < C, y(w*Tx() 4 p*) = 1.

Proof.

c0<ai<Cai+r=C

S0<r<C

g =0

& =0

c0<af < Caf(yMw ™ 4 p)y+6 —1)=0
DT £ by et —1=0

Sy T 4 by =1

O

v
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Coordinate Ascent Algorithm

@ Consider the following unconstrained optimization problem
max J (a1, a2, -+, am)

@ Repeat the following step until convergence
o For each i, aj = argmax, J(aa, -+, Qi—1, 0, Qjy1, - 5 Am)
@ For some «;, fix the other variables and re-optimize J(«) with respect
to «;
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Sequential Minimal Optimization (SMO) Algorithm

o Coordinate ascent algorithm cannot be applied since > a;y(i) =0
@ The basic idea of SMO

Algorithm 1 SMO algorithm

1: Given a starting point o € dom J

2: repeat

3:  Select some pair of o; and «; to update next (using a heuristic that
tries to pick the two a's);

4:  Re-optimize J (o) with respect to «; and «;, while holding all the
other ai's (k # i,J) fixed

5: until convergence criterion is satisfied
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SMO Algorithm (Contd.)

@ Convergence criterion

m
S ay =0, 0<a;<C, Vi=1---,m

i=1
m >1, Vi:aj=0

y(i) Zajy(j) < X(i),X(j) >4+b|=<¢=1, Vi:0<a;<C
J=t <1, Vi:aj=C
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SMO Algorithm (Contd.)

o Take a1 and «y for example

1 2 1 2
](af,a}) = af—l—a;—i 11@? —5 22(1;— —SKlgai"a

fy(l) Viad — y(2) Voag + W
where
KU :< X(i),X(j) >
S = y(l)y(2)

V=T — 330, >ls yDyWaja;K;
Vi =315 yVaiK;
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SMO Algorithm (Contd.)

@ Define

m
i=3
o Lower bound L and upper bound H for a3 :
o When yMy@ = 1, H = min{C, C+as—a1} and L = max{0, s —ay }
o When yMy®) =1, H=min{C,as+a;1} and L = max{0,; +ap — C}

c 7 c <.
’ Y
e N
. a; ta; N
N
a; ,/' C+a2 - a; \\\ \\\
d d AY N
4 4 N Y
v . N N
2~ Qg e AR AN
. N N
d Y
Pt s tay = C
d N
4 N
4 Y
0 T Cc 0 T c
a ag
1),,2) 0,2 —
(@) yVy -1 (b) yWy 1
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SMO Algorithm (Contd.)

@ Address the following optimization problem

maxe,  J(of = (¢~ azy@)y a7)
s.t. L<af <H
e Find the extremum by letting the first derivative (with respect to o)
to be zero as follows

0
@f(@ - a;y(z))y(l)’ 04;)
= —S+1+SKu((y™ — Saf) — Kaaad — SKia(Cy™ — Saf)

+Kpag +y®vi —y@v, =0
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SMO Algorithm (Contd.)

e By assuming £; = 37, yWa;K;; + b — y(),
j=1 JIN y

at = Qo + y(z)(El — E2)
2 K11 — 2K12 + Koo

e Since aj should be in the range of [L, H],

H, a;'>H
oz;': a;, Lgaing
L, a <L
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SMO Algorithm (Contd.)

e Updating b to verify if the convergence criterion is satisfied
o When 0 < of < C,

by = —E —yWKu(af —a1) - yPKa(ag —az) +b
o When0 < af < C,
by = —E — yOKp(oy — 1) — yPKa(of — a2) + b
o when 0 < af < Cand 0 < ay < C both hold,
bt — b = b}

o When of and a3 are on the bound (i.e., &y =0ora; = C and a; =0
or ap = C), all values between b;” and bj satisfy the KKT conditions

bt = (b + b3)/2
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SMO Algorithm (Contd.)

o Updating E;

Zy(J) TK;; +Zy(1 +K + bt — )
j=1 j=3
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SMO Algorithm (Contd.)

@ How to choose the target variable (i.e., a3 and ay in our case)?
e Both a7 and a» should violate the KKT conditions
o Since the step size of updating a depends on |E; — E|, a greedy method
suggests we should choose the one maximizing |E; — E;|
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Thanks!

Q&A
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