
Lecture Notes on Support Vector Machine

Feng Li
fli@sdu.edu.cn

Shandong University, China

1 Hyperplane and Margin

In a n-dimensional space, a hyper plane is defined by

ωTx+ b = 0 (1)

where ω ∈ Rn is the outward pointing normal vector, and b is the bias term.
The n-dimensional space is separated into two half-spaces H+ = {x ∈ Rn |
ωTx+ b ≥ 0} and H− = {x ∈ Rn | ωTx+ b < 0} by the hyperplane, such that
we can classify a given point x0 ∈ Rn according to sign(ωTx + b). Specifically,
given a point x0 ∈ Rn, its label y is defined as y0 = sign(ωTx0 + b), i.e.

y0 =

{
1, ωTx0 + b ≥ 0

−1, otherwise
(2)

Given any x0 ∈ Rn, we can calculate the signed distance from x to the
hyperplane as

d0 =
ωTx0 + b

‖ω‖
=

(
ω

‖ω‖

)T
x0 +

b

‖ω‖
(3)

The sign of the distance, i.e., sign(γ), can be indicated by y0 = sign(ωTx0 + b).
Therefore, we define the (unsigned) geometric distance of x0 as

γ0 =
y0(ωTx0 + b)

‖ω‖
(4)

γ0 is the so-called margin of x0 (with respect to the hyperplane ωTx+ b = 0).
Now, given a set of m training data {(x(i), y(i))}i=1,··· ,m, we first assume that

they are linearly separable. Specifically, there exists a hyperplane (parameterized
by ω and b) such that ωTx(i) + b ≥ 0 for ∀i with y(i) = 1, while ωTx(i) + b ≤ 0
for ∀i with y(i) = −1. As shown in Fig. 1, for ∀i = 1, · · · ,m, we can calculate
its margin as

γ(i) = y(i)

((
ω

‖ω‖

)T
x(i) +

b

‖ω‖

)
(5)

With respect to the whole training set, the margin is defined as

γ = min
i
γ(i) (6)

1



𝜔𝑥 !

𝛾 !

Figure 1: Margin and hyperplane.

2 Support Vector Machine

2.1 Formulation

The hyperplane actually serves as a decision boundary to differentiating positive
data samples from negative data samples. Given a test data sample, we will
make a more confident decision if its margin (with respect to the decision hy-
perplane) is larger. By leveraging different values of ω and b, we can construct
a infinite number of hyperplanes, but which one is the best? Supported Vector
Machine (SVM) answers the above question by maximizing γ (see Eq. (6)) as
follows

max
γ,ω,b

γ

s.t. y(i)(ωTx(i) + b) ≥ γ‖ω‖, ∀i

Note that scaling ω and b (e.g., by multiplying both ω and b by the same
constant) does not change the hyperplane. Hence, we scale (ω, b) such that

min
i
{y(i)(ωTx(i) + b)} = 1,

In this case, the representation of the margin becomes 1/‖ω‖ according to
Eq. (6). Then, the problem formulation can be rewritten as

max
ω,b

1/‖w‖

s.t. y(i)(ωTx(i) + b) ≥ 1, ∀i

Since maximizing 1/‖ω‖ is equivalent to minimizing ‖ω‖2 = ωTω, we further
rewrite the problem formulation as

min
ω,b

ωTω (7)

s.t. y(i)(ωTx(i) + b) ≥ 1, ∀i (8)

As shown in Fig. 2, the distance from the dashed lines (ωTx + b = 1 and
ωTx+ b = −1) to the hyperplane ωTx+ b = 0 is the margin (see Eq. (6)). The

2



𝜔!𝑥 + 𝑏 = 0

𝜔!𝑥 + 𝑏 = 1

𝜔!𝑥 + 𝑏 = −1

Positive class: 𝜔!𝑥+ 𝑏 ≥ 1

Negative class: 𝜔!𝑥+ 𝑏 ≤ −1

𝛾 =
1
𝜔

Figure 2: Hard-margin SVM.

aim of the above optimization problem is to find a hyperplane (parameterized
by ω and b) with margin γ = 1/‖ω‖ maximized, while the resulting dashed lines
satisfy the following condition: for each training sample (x(i), y(i)), ωTx(i) +b ≥
1 if y(i) = 1, and ωTx(i) + b ≤ 1 if y(i) = −1.

This is a quadratic programming (QP) problem, and can be solved by exiting
generic QP solvers, e.g., interior point method, active set method, gradient
projection method. Unfortunately, the existing generic QP solvers is of low
efficiency, especially in face of a large training set.

2.2 Preliminary Knowledge of Convex Optimization

2.2.1 Optimization Problems and Lagrangian Duality

We now consider the following optimization problem

min
ω

f(ω) (9)

s.t. gi(ω) ≤ 0, i = 1, · · · , k (10)

hj(ω) = 0, j = 1, · · · , l (11)

where ω ∈ D is the variable with D =
⋂k
i=1 domgi ∩

⋂l
j=1 domhj representing

the feasible domain defined by the constraints. The aim of the above optimiza-
tion problem is to minimizing the objective function f(ω) subject to the inequal-
ity constraints g1(ω), · · · , gk(ω) and the equality constraints h1(ω), · · · , hl(ω).

We construct the Lagrangian of the above optimization problem as

L(ω, α, β) = f(ω) +

k∑
i=1

αigi(ω) +

l∑
j=1

βjhj(ω) (12)

In fact, L(ω, α, β) can be treated as a weighted sum of the objective and
constraint functions. αi is the so-called Lagrange multiplier associated with
gi(ω) ≤ 0, while βi is the one associated with hi(ω) = 0

3



We then define its Lagrange dual function G : Rk × Rl → R as an infimum
1 of L with respect to ω, i.e.,

G(α, β) = inf
ω∈D
L(ω, α, β)

= inf
ω∈D

f(ω) +

k∑
i=1

αigi(ω) +

l∑
j=1

βjhj(ω)

 (13)

We observe that, i) the infimum is unconstrained (as supposed to the original
constrained minimization problem); ii) G is an infimum of a set of affine functions
and thus is a concave function regardless of the original problem; iii) G can be
−∞ for some α and β

Theorem 1. Lower Bounds Property: If α � 0, then G(α, β) ≤ p∗ where p∗ is
the optimal value of the (original) primal problem defined by (9)∼(11).

Proof. If ω̃ is feasible, then we have gi(ω̃) ≤ 0 for ∀i = 1, · · · , k and hj(ω̃) = 0
for ∀j = 1, · · · , l. Since α � 0 (i.e., αi ≥ 0 for ∀i), we have f(ω̃) ≥ L(ω̃, α, β)
for all feasible ω̃’s. Because L(ω̃, α, β) ≥ infω∈D L(ω, α, β),

f(ω̃) ≥ L(ω̃, α, β) ≥ inf
ω∈D

L(ω, α, β) = G(α, β)

holds for all feasible ω̃. We now choose the minimizer of f(ω̃) over all feasible
ω̃’s to get p∗ ≥ G(α, β).

It is shown by Theorem 1 that, the Lagrange dual function provides a
non-trivial lower bound to the primal optimization problem. By optimizing the
lower bound, we define the Lagrange dual problem with respect to the primal
problem (9)∼(11) as follows

maxα,β G(α, β) (14)

s.t. α � 0, ∀i = 1, · · · , k (15)

We denote by d∗ the optimal value of the above Lagrange dual problem. The
weak duality d∗ ≤ p∗ always holds for all optimization problems, and can be used
to find non-trivial lower bounds. The duality is said to be strong if d∗ = p∗. In
this case, we can optimize the original problem by optimizing its dual problem.

2.2.2 Complementary Slackness

Let ω∗ be a primal optimal point and (α∗, β∗) be a dual optimal point.

Theorem 2. Complementary Slackness: If strong duality holds, then

α∗i gi(ω
∗) = 0 (16)

for ∀i = 1, 2, · · · , k.

1In mathematics, the infimum (abbreviated inf ; plural infima) of a subset S of a partially
ordered set T is the greatest element in T that is less than or equal to all elements of S, if such
an element exists. More details about infimum and its counterpart suprema can be found in
https://en.wikipedia.org/wiki/Infimum_and_supremum.

4

https://en.wikipedia.org/wiki/Infimum_and_supremum


Proof.

f(ω∗) = G(α∗, β∗)

= inf
ω

f(ω) +

k∑
i=1

α∗i gi(ω) +

l∑
j=1

β∗j hj(ω)


≤ f(ω∗) +

k∑
i=1

α∗i gi(ω
∗) +

l∑
j=1

β∗j hj(ω
∗)

≤ f(ω∗)

The first equality is due to the strong duality, and we have the second one
according to the definition of the dual function. The third inequality follows
because the infimum of the Lagrangian over ω is less than or equal to its value
at ω = ω∗. We have the last inequality since α∗i ≥ 0 and gi(ω

∗) ≤ 0 for
∀i = 1, · · · , k, and hj(ω

∗) = 0 for j = 1, · · · , l. In fact, the last two inequalities

should hold with equality, such that
∑k
i=1 α

∗
i gi(ω

∗) = 0. Since each term, i.e.,
α∗i gi(ω

∗), is nonpositive, we thus conclude α∗i gi(ω
∗) = 0 for ∀i = 1, 2, · · · , k.

Another observation is that, since the inequality in the third line holds with
equality, ω∗ actually minimizes L(ω, α∗, β∗) over ω.

2.2.3 Karush-Kuhn-Tucker (KKT) Conditions

We assume that the objective function and the inequality constraint functions
are differentiable. Again, let ω∗ and (α∗, β∗) be any primal and dual optimal
points, respectively, and suppose strong duality holds. Since ω∗ is the minimizer
of L(ω, α∗, β∗) over ω, it follows that the gradient of L vanishes at ω∗, i.e.,

∇f(ω∗) +

k∑
i=1

α∗i∇gi(ω∗) +

l∑
j=1

β∗j∇hj(ω∗) = 0 (17)

which is the so-called stationarity condition. Since ω∗ and α∗ should be in the
feasible domains of the primal problem and the dual problem, respectively, we
have the primal feasibility conditions (18)∼(18) and the dual feasibility condition
(20) holds

gi(ω
∗) ≤ 0, ∀i = 1, · · · , k (18)

hj(ω
∗) = 0, ∀j = 1, · · · , l (19)

α∗i ≥ 0, ∀i = 1, · · · , k (20)

(21)

All these conditions (16)∼(20) are so-called Karush-Kuhn-Tucker (KKT) condi-
tions. For any optimization problem with differentiable objective and constraint
functions for which strong duality obtains, any pair of primal and dual optimal
points must satisfy the KKT conditions.

2.2.4 Convex Optimization Problems

An optimization problem is convex, if both objective function f(ω) and in-
equality constraints gi(ω) (i = 1, · · · , k) are convex and the equality constraints

5



hj(ω) are affine functions. Therefore, a convex optimization problem can be
represented by

min
ω

f(w) (22)

s.t. gi(w) ≤ 0, i = 1, · · · , k (23)

Aw − b = 0 (24)

where A ∈ Rl×n and b ∈ Rl.
Although strong duality does not hold (in general), but we usually (but not

always) have strong duality for convex optimization problems. There are many
results that establish conditions on the problem, beyond convexity, under which
strong duality holds. These conditions are called constraint qualifications. One
simple constraint qualification is Slater’s condition.

Theorem 3. Slater’s condition: Strong duality holds for a convex problem

min
ω

f(w)

s.t. gi(w) ≤ 0, i = 1, · · · , k
Aw − b = 0

if it is strictly feasible, i.e.,

∃ ω ∈ relintD : gi(ω) < 0, i = 1, · · · ,m,Aw = b

Detailed proof of the above theorem can be found in Prof. Boyd and
Prof. Vandenberghe’s Convex Optimization book (https://web.stanford.
edu/~boyd/cvxbook/bv_cvxbook.pdf, see Sec. 5.3.2, pp. 234-236).

For convex optimization problem, the KKT conditions are also sufficient for
the points to be primal and dual optimal. In particular, suppose ω̃, α̃, and β̃
are any points satisfying the following KKT conditions

gi(ω̃) ≤ 0, ∀i = 1, · · · , k (25)

hj(ω̃) = 0, ∀j = 1, · · · , l (26)

α̃i ≥ 0, ∀i = 1, · · · , k (27)

α̃igi(ω̃) = 0, ∀i = 1, · · · , k (28)

∇f(ω̃) +

k∑
i=1

α̃i∇gi(ω̃) +

l∑
j=1

β̃j∇hj(ω̃) = 0 (29)

then they are primal and dual optimal with strong duality holding.

3 Duality of SVM

We now re-visit our problem formulation of SVM. The (primal) SVM problem
is given

min
ω,b

1

2
‖ω‖2 (30)

s.t. y(i)(ωTx(i) + b) ≥ 1, ∀i (31)

where we introduce a constant 1/2 so as to simplify our later derivations.

6

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf


Theorem 4. The dual optimization problem of the primal SVM problem (30)∼(31)
can be formulated as

max
α

G(α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj(x
(i))Tx(j) (32)

s.t.

m∑
i=1

αiy
(i) = 0 (33)

αi ≥ 0 ∀i (34)

Proof. We first define the Lagrangian of the primal SVM problem as

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi(y
(i)(wTx(i) + b)− 1) (35)

where αi ≥ 0 is the Lagrangian multiplier for the i-th inequality constraint.
We then calculate the Lagrange dual function G(α) by taking the infimum of
L(ω, b, α) over ω and b. In particular, we calculate the gradient of L(ω, b, α)
with respect to ω, and let the gradient be zero,

5ωL(ω, b, α) = w −
m∑
i=1

αiy
(i)x(i) = 0

and we thus have

ω =

m∑
i=1

αiy
(i)x(i) (36)

Similarly,

∂

∂b
L(ω, b, α) =

m∑
i=1

αiy
(i) = 0 (37)

In another word, the above two equations are necessary to calculating infω,b L(ω, b, α)
over ω and b. Substituting (36) and (37) into (35) gives us

1

2
‖ω‖2 −

m∑
i=1

αi[y
(i)(ωTx(i) + b)− 1]

=
1

2
ωT

m∑
i=1

αiy
(i)x(i) − ωT

m∑
i=1

αiy
(i)x(i) −

m∑
i=1

αiy
(i)b+

m∑
i=1

αi

= −1

2
ωT

m∑
i=1

αiy
(i)x(i) −

m∑
i=1

αiy
(i)b+

m∑
i=1

αi

= −1

2

m∑
i=1

m∑
j=1

αiαjy
(i)y(j)(x(i))Tx(j) − b

m∑
i=1

αiy
(i) +

m∑
i=1

αi

=

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjy
(i)y(j)(x(i))Tx(j) − b

m∑
i=1

αiy
(i)

=

m∑
i=1

αi −
1

2

m∑
i=1,j=1

αiαjy
(i)y(j)(x(i))Tx(j)

7



which completes our proof.

It is a convex optimization problem respecting Slater’s condition; therefore,
the strong duality (p∗ = d∗) holds and optimal solutions of ω, α and β satisfy
the KKT conditions. We can use several off-the-shelf solvers (e.g., quadprog
(MATLAB), CVXOPT, CPLEX, IPOPT, etc.) to solve such a QP problem.

Let α∗ be the optimal value of α for the dual SVM problem. We can use
Eq. (36) to calculate the optimal value of ω, i.e., ω∗. The question is, being
aware of ω∗, how to calculate the optimal value of b, i.e., b∗? Due to the
complementary slackness,

α∗i (y
(i)(ω∗Tx(i) + b∗)− 1) = 0

for ∀i = 1, · · · , k, we have

y(i)(ω∗Tx(i) + b∗) = 1

for ∀i such that α∗i > 0. As y(i) ∈ {−1, 1}, we have

b∗ = y(i) − ω∗Tx(i)

for ∀i such that α∗i > 0. For robustness, we calculated the optimal value for b
by taking the averages across all b∗’s

b∗ =

∑
i:α∗

i>0(y(i) − ω∗Tx(i))∑m
i=1 1(α∗i > 0)

In fact, most αi’s in the solution are zeros. According to complementary
slackness (see Theorem 2),

α∗i [1− y(i)(ω∗
Tx(i) + b∗)] = 0

α∗i is non-zero only if x(i) lies on the one of the two margin boundaries (i.e.,
the dash lines shown in Fig. 2) such that y(i)(ω∗Tx(i) + b) = 1. These data
samples are so-called support vector, i.e., the vectors “supporting” the margin
boundaries. We can redefine ω by

w =
∑
s∈S

αsy
(s)x(s)

where S denotes the set of the indices of the support vectors

4 Kernel based SVM

By far, one of our assumption is that the training data can be separated linearly.
Nevertheless, Linear models (e.g., linear regression, linear SVM etc.) cannot
reflect the nonlinear pattern in the data, as demonstrated in Fig. 4.

The basic idea of kernel method is to make linear model work in nonlinear
settings by introducing kernel functions. In particular, by mapping the data
into a higher-dimensional feature space where it exhibits linear patterns, we can
employ the linear classification model in the new feature space.

8



Figure 3: Non-linear data v.s. linear classifier

We take the following binary classification problem for example. As shown in
Fig. 4 (a), Each sample is represented by a single feature x (i.e., the data samples
lie in a 1-dimensional space), and no linear separator exists for this data. We
map each data sample into a 2-dimensional space by x→ {x, x2}, such that each
sample now has two features (“derived” from the old representation). As shown
in Fig. 4 (b), data become linearly separable in the new higher-dimensional
feature space

(a) (b)

Figure 4: Feature mapping for 1-dimensional feature space.

Another example is given in Fig. 5. The data sample can be defined by
x = {x1, x2}, and there is no linear separator exists for this data. We apply
the mapping x = {x1, x2} → z = {x21,

√
2x1x2, x

2
2}, such that the data become

linearly separable in the resulting 3-dimensional feature space.
We now consider a general quadratic feature mapping φ

φ : x→ {x21, x22, · · · , x2n, x1x2, x1x2, · · · , x1xn, · · · , xn−1xn}

where each new feature uses a pair of the original features. It can be observed
that, the feature mapping leads to a huge number number of new features, such
that i) computing the mapping itself can be inefficient, especially when the new
feature space is of much higher dimension; ii) storing and utilizing the data
samples in the new feature space can be expensive (e.g., we have to store all
the high-dimensional images of the data samples and computing inner products
in the high-dimensional feature space is of considerable overhead). Fortunately,
the concept of kernels helps us avoid all these issues! With the help of kernels,
the mapping does not have to be explicitly computed, and computations in the
new high-dimensional feature space remains efficient.

9



(a) (b)

Figure 5: Feature mapping for 2-dimensional feature space.

Take the quadratic mapping as example again. Consider a 2-dimensional
input space (i.e., the original feature space), we define a kernel function K that
takes x = (x1, x2) and z = (z1, z2) as inputs

K(x, z) = (xT z)2

= (x1z1 + x2z2)2

= x21z
2
1 + x22z

2
2 + 2x1x2z1z2

= (x21,
√

2x1x2, x
2
2)T (z21 ,

√
2z1z2, z

2
2) (38)

It is demonstrated that the kernel function K implicitly defines a mapping

φ(x) = {x21,
√

2x1x2, x
2
2}

Through the kernel function, when computing the inner product < φ(x), φ(z) >,
we do not have to map x and z into the new higher-dimensional feature space
first. Instead, < φ(x), φ(z) > can be calculated in the original lower-dimensional
input space. Formally speaking, each kernel K is associated with a feature
mapping φ, which takes input x ∈ X (input space) and maps it to F (feature
space). F needs to be a vector space with dot product defined, and is thus the
so-called a Hilbert space. In another word, kernel K(x, z) = φ(x)Tφ(z) takes
two inputs and gives their similarity in F space

K : X × X → R (39)

The problem is, can any function be used as a kernel function? The answer
is no. Kernel functions must satisfy Mercer’s Condition. To introduce Mercer’s
condition, we need to define the quadratically integrable (or square integrable)
function concept. A function q : Rn → R is square integrable if∫ ∞

−∞
q2(x)dx <∞

A function K(·, ·) : Rn × Rn → R satisfies Mercer’s condition if for any square
integrable function q(x), the following inequality holds for ∀x, z ∈ Rn.∫ ∫

q(x)K(x, z)q(z)dxdz ≥ 0

10



Let K1 and K2 be two kernel functions, then the following rules hold:

• Direct sum: K(x, z) = K1(x, z) +K2(x, z)

• Scalar product: K(x, z) = αK1(x, z)

• Direct product: K(x, z) = K1(x, z)K2(x, z)

Kernels can be constructed by composing these rules.
In SVM, Mercer’s condition can be translated to another way to check

whether K is a valid kernel. The kernel function K also defines the so-called ker-
nel matrix over the data set (also denoted byK). Givenm samples {x(1), x(2), · · · , x(m)},
the (i, j)-th entry of K is

Ki,j = K(x(i), x(j)) = φ(x(i))Tφ(x(j))

If the matrix K is positive semi-definite, K(·, ·) is a valid kernel function.
Follows are some commonly used kernels:

• Linear (trivial) Kernal:
K(x, z) = xT z

• Quadratic Kernel

K(x, z) = (xT z)2 or (1 + xT z)2

• Polynomial Kernel (of degree d)

K(x, z) = (xT z)d or (1 + xT z)d

• Gaussian Kernel

K(x, z) = exp

(
−‖x− z‖

2

2σ2

)
• Sigmoid Kernel

K(x, z) = tanh(αxT + c)

Overall, kernel K(x, z) represents a dot product in some high-dimensional
feature space F

K(x, z) = (xT z)2 or (1 + xT z)2

Any learning algorithm in which data samples only appear as dot products

x(i)
T
x(j) can be kernelized, by replacing x(i)

T
x(j) with K(x(i), x(j)). Actually,

most learning algorithms are like that, such as SVM, linear regression, etc. Many
of the unsupervised learning algorithms (e.g., K-means clustering, Principal
Component Analysis, etc.) can be kernelized too.

Recall that, the dual problem of SVM can be formulated as

maxα

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj < x(i), x(j) >

s.t.

m∑
i=1

y(i)αi = 0

αi ≥ 0, ∀i = 1, 2, · · · ,m

11



Replacing < x(i), x(j) > by φ(x(i))Tφ(x(j)) = K(x(i), x(j)) = Kij gives us

maxα

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαjKi,j (40)

s.t.

m∑
i=1

αiy
(i) = 0 (41)

αi ≥ 0, ∀i = 1, 2, · · · ,m (42)

SVM now learns a linear separator in the kernel defined feature space F , and
this corresponds to a non-linear separator in the original space X .

Supposing α∗i (i = 1, · · · ,m) is the optimal solution to the above optimiza-
tion problem, we can define the linear decision boundary ω∗Tφ(x) + b∗ = 0 in
the high-dimensional feature space. As what we have shown in Sec. 3, in the
feature space, ω∗ can be calculated by

ω∗ =
∑
i:α∗

i>0

α∗i y
(i)φ(x(i)) (43)

and b∗ can be calculated according to any data sample i such that α∗i > 0 as
follows

b∗ = y(i) − ω∗Tφ(x(i))

= y(i) −
∑

j:α∗
j>0

α∗jy
(j)φT (x(j))φ(x(i))

= y(i) −
∑

j:α∗
j>0

α∗jy
(j)Kij (44)

Given a test data sample x, the prediction can be made by

y = sign
(
ω∗Tφ(x) + b∗

)
= sign

 ∑
i:α∗

i>0

α∗i y
(i)φT (x(i))φ(x) + b∗


= sign

 ∑
i:α∗

i>0

α∗i y
(i)K(x(i), x) + b∗

 (45)

Kernelized SVM needs the support vectors in the test phase (except when
you can write φ(x) as an explicit, reasonably-sized vector). In the unkernelized
version, ω∗ =

∑
s∈S α

∗
sy

(s)x(s) can be computed and stored as a n-dimensional
vector, so the support vectors need not be stored.

5 Regularized SVM

We now introduce regularization to SVM. The regularized SVM is also called
Soft-Margin SVM. In the regularized SVM, we allow some training examples to
be misclassified, such that some training examples may fall within the margin
region, as shown in Fig. 5. For the linearly separable case, the constraints are

12



Figure 6: Regularized (Soft-Margin) SVM

y(i)(ωTx(i) + b) ≥ 1

for ∀i = 1, · · · ,m, while in the non-separable case, we relax the above constraints
as:

y(i)(ωTx(i) + b) ≥ 1− ξi
for ∀i = 1, · · · ,m, where ξi is called slack variable.

In the non-separable case, we allow misclassified training examples, but we
would like the number of such training examples to be as small as possible, by
minimizing the sum of the slack variables

∑
i ξi. We reformulating the SVM

problem by introducing slack variables ξi

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi (46)

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, ∀i = 1, · · · ,m (47)

ξi ≥ 0, ∀i = 1, · · · ,m (48)

The parameter C is used to tune the trade-off between the following two goals:
i) although small C implies that ‖ω‖2/2 dominates such that large margins are
preferred, this allows a potential large number of misclassified training examples;
ii) large C means C

∑m
i=1 ξi dominates such that the number of the misclassified

examples is decreased at the expense of having a small margin.
The Lagrangian of the optimization problem (46)∼(48) can be defined by

L(ω, b, ξ, α, r) =
1

2
ωTω + C

m∑
i=1

ξi −
m∑
i=1

αi[y
(i)(ωTx(i) + b)− 1 + ξi]−

m∑
i=1

riξi

13



and according to the KKT conditions, we have

5ωL(ω∗, b∗, ξ∗, α∗, r∗) = 0 ⇒ ω∗ =

m∑
i=1

α∗i y
(i)x(i) (49)

5bL(ω∗, b∗, ξ∗, α∗, r∗) = 0 ⇒
m∑
i=1

α∗i y
(i) = 0 (50)

5ξiL(ω∗, b∗, ξ∗, α∗, r∗) = 0 ⇒ α∗i + r∗i = C, for ∀i (51)

α∗i , r
∗
i , ξ
∗
i ≥ 0, for ∀i (52)

y(i)(ω∗Tx(i) + b∗) + ξ∗i − 1 ≥ 0, for ∀i (53)

α∗i (y
(i)(ω∗Tx(i) + b∗) + ξ∗i − 1) = 0, for ∀i (54)

r∗i ξ
∗
i = 0, for ∀i (55)

We then formulate the corresponding dual problem as

max
α

J (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

y(i)y(j)αiαj < x(i), x(j) > (56)

s.t. 0 ≤ αi ≤ C, ∀i = 1, · · · ,m (57)
m∑
i=1

αiy
(i) = 0 (58)

We can use existing QP solvers to address the above optimization problem and
calculate the optimal value of α.

Let α∗i be the optimal values of α. According to KKT conditions, ω∗ can
be calculated by (49). We then show how to calculate the optimal value of b
(denoted by b∗). Since α∗i + r∗i = C and r∗i ξ

∗
i = 0 holds for ∀i, we have

(C − α∗i )ξ∗i = 0, ∀i

Hence, for ∀i such that α∗i 6= C, we have ξ∗i = 0 and thus

α∗i (y
(i)(ω∗Tx(i) + b∗)− 1) = 0

according to (54). Moreover, since ∀i such that 0 < α∗i < C, we have

y(i)(ω∗Tx(i) + b∗) = 1

and thus
ω∗Tx(i) + b∗ = y(i)

We finally calculate b∗ according to any data sample i such that 0 < α∗i < C 2

as follows
b∗ = y(i) − ω∗Tx(i) (59)

To improve the precision of the numerical computations, we can calculate b∗ by
taking into account all data samples with 0 < α∗i < C

b∗ =

∑
i:0<α∗

i<C
(y(i) − ω∗Tx(i))∑m

i=1 1(0 < α∗i < C)
(60)

2Such data samples are the support vectors in the soft-margin SVM.

14



6 Sequential Minimal Optimization Algorithm

For the optimization problem defined in (56)∼(58), we cannot directly apply
coordinate descent algorithm, due to the equality constraint (58) where it is
demonstrate that any variable αi of α is determined by the others, i.e.

αiy
(i) = −α1y

(1) − α2y
(2) − · · · − αi−1y(i−1) − αi+1y

(i+1) − · · · − αmy(m)

Therefore, in the Sequential Minimal Optimization (SMO) algorithm, we opti-
mize two of the variables at one time. We first summarize the general form of
the SMO algorithm in Algorithm 1. The algorithm achieves the convergence

Algorithm 1: SMO algorithm

1: Given a starting point α ∈ dom J
2: repeat
3: Select some pair of αi and αj to update next (using a heuristic that tries

to pick the two α’s);
4: Re-optimize J (α) with respect to αi and αj , while holding all the other

αk’s (k 6= i, j) fixed
5: until convergence criterion is satisfied

if the outputs of the algorithm, i.e., α (and thus ω and b which are calculated
according to α), satisfy all the KKT conditions. To verify if the KKT conditions
holds for these parameters, we introduce some corollaries according to the KKT
conditions.

Corollary 1. For ∀i = 1, 2, · · · ,m, when α∗i = 0, y(i)(ω∗Tx(i) + b∗) ≥ 1.

Proof.

∵ α∗i = 0, α∗i + r∗i = C (51)

∴ r∗i = C

∵ r∗i ξ
∗
i = 0 (55)

∴ ξ∗i = 0

∵ y(i)(ω∗Tx(i) + b∗) + ξ∗i − 1 ≥ 0 (53)

∴ y(i)(ω∗Tx(i) + b∗) ≥ 1

Corollary 2. For ∀i = 1, 2, · · · ,m, when α∗i = C, y(i)(ω∗Tx(i) + b∗) ≤ 1

Proof.

∵ α∗i = C, α∗i (y
(i)(ω∗Tx(i) + b∗) + ξ∗i − 1) = 0 (54)

∴ y(i)(ω∗Tx(i) + b∗) + ξ∗i − 1 = 0

∵ ξ∗i ≥ 0 (52)

∴ y(i)(ω∗Tx(i) + b∗) = 1− ξ∗ ≤ 1

15



Corollary 3. For ∀i = 1, 2, · · · ,m, when 0 < α∗i < C, y(i)(ω∗Tx(i) + b∗) = 1.

Proof.

∵ 0 < α∗i < C,α∗i + r∗i = C (51)

∴ 0 < r∗i < C

∵ r∗i ξ
∗
i = 0 (55)

∴ ξ∗i = 0

∵ 0 < α∗i < C,α∗i (y
(i)(ω∗Tx(i) + b) + ξ∗i − 1) = 0 (54)

∴ y(i)(ω∗Tx(i) + b∗) + ξ∗i − 1 = 0

∴ y(i)(ω∗Tx(i) + b∗) = 1

Remarks: According to these corollaries, for ∀i = 1, · · · ,m, x(i) is i) correctly
classified if α∗i = 0; ii) misclassified if α∗i = C; and iii) a support vector if
0 ≤ α∗i ≤ C.

According to the KKT conditions and the corollaries, the SMO algorithm
terminates when the following conditions hold (with some precision ε).

m∑
i=1

αiy
(i) = 0, 0 ≤ αi ≤ C, ∀i = 1, · · · ,m

y(i)

 m∑
j=1

αjy
(j) < x(i), x(j) > −b

 =


≥ 1, ∀i : αi = 0

= 1, ∀i : 0 < αi < C

≤ 1, ∀i : αi = C

As shown in Algorithm 1, we have to tune two of the αi’s which do not
respect the above conditions (and thus the KTT conditions). In the following,
we take α1 and α2 for example to explain the optimization process of the SMO
algorithm (i.e., Line 4 in Algorithm 1). By treating α1 and α2 as variables
while the others as known quantities, the objective function (56) can be re-
written as

J (α+
1 , α

+
2 ) = α+

1 + α+
2 −

1

2
K11α

+
1

2 − 1

2
K22α

+
2

2 − SK12α
+
1 α

+
2

−y(1)V1α+
1 − y(2)V2α

+
2 + Ψ (61)

where we denote by α+
1 and α+

2 the variables we try optimize in the current
iteration (while treating α1 and α2 as the results in the last iteration) and

Kij =< x(i), x(j) >

S = y(1)y(2)

Ψ =
∑m
i=3 αi −

1
2

∑m
i=3

∑m
j=3 y

(i)y(j)αiαjKij

Vi =
∑m
j=3 y

(j)αjKij

According to the constraint (58), we can define

ζ = α+
1 y

(1) + α+
2 y

(2) = −
m∑
i=3

αiy
(i) = α1y

(1) + α2y
(2) (62)

16



𝛼!"

𝛼#"

𝐶0

𝐶

𝛼# − 𝛼!

𝐶 + 𝛼# − 𝛼!

(a) y(1)y(2) = −1

𝛼!"

𝛼#"

𝐶0

𝐶

𝛼! +𝛼# −𝐶

𝛼! +𝛼!

(b) y(1)y(2) = 1

Figure 7: α+
1 and α+

2 .

which confines the optimization to be on a line. Since 0 ≤ α1, α2 ≤ C, we can
derive a lower bound L and an upper bound H for them. As shown in Fig. 7(a),
when y(1)y(2) = −1, we have

H = min{C,C + α2 − α1} and L = max{0, α2 − α1} (63)

When y(1)y(2) = 1 (as shown in Fig. 7(b)), H and L can be calculated as

H = min{C,α2 + α1} and L = max{0, α1 + α2 − C} (64)

Then, our problem can be formulated as

maxα2
J ((ζ − α+

2 y
(2))y(1), α+

2 ) (65)

s.t. L ≤ α+
2 ≤ H (66)

Therefore, we can find the extremum by letting the first derivative (with respect
to α+

2 ) to be zero as follows

∂

∂α+
2

f((ζ − α+
2 y

(2))y(1), α+
2 )

= −S + 1 + SK11(ζy(1) − Sα+
2 )−K22α

+
2 − SK12(ζy(1) − Sα+

2 )

+K12α
+
2 + y(2)V1 − y(2)V2 = 0 (67)

By assuming

Ei =

m∑
j=1

y(j)αjKij + b− y(i) (68)

17



we then have

(K11 − 2K12 +K22)α+
2

= ζy(2)(K11 −K12) + y(2)(V1 − V2)− S + 1

= y(2)(y(1)α1 + y(2)α2)(K11 −K12)

+y(2)

(
m∑
i=1

y(i)αi(K1i −K2i)− y(1)α1(K11 −K12)− y(2)α2(K12 −K22)

)
−S + 1

= (Sα1 + α2)(K11 −K12)− Sα1(K11 −K12)

−α2(K12 −K22) + y(2)(E1 − E2)

= α2(K11 − 2K12 +K22) + y(2)(E1 − E2)

and thus

α+
2 = α2 +

y(2)(E1 − E2)

K11 − 2K12 +K22

Since α+
2 should be in the range of [L,H],

α+
2 =


H, α+

2 > H

α+
2 , L ≤ α+

2 ≤ H
L, α+

2 < L

In each iteration, we have to update b accordingly so as to verify if the
convergence criterion is satisfied. According to Corollary 3, when 0 < α+

1 < C,
we have

b+1 = y(1) − α+
1 y

(1)K11 − α+
2 y

(2)K21 −
m∑
i=3

αiy
(i)Ki1

= −E1 + α1y
(1)K11 + α2y

(2)K21 + b− α+
1 y

(1)K11 − α+
2 y

(2)K21

= −E1 − y(1)K11(α+
1 − α1)− y(2)K21(α+

2 − α2) + b

Similarly, when 0 < α+
2 < C, another choice to compute b+ is

b+2 = −E2 − y(1)K12(α+
1 − α1)− y(2)K22(α+

2 − α2) + b

Therefore, when 0 < α+
1 < C and 0 < α+

2 < C both hold, we have b+1 = b+2
and we can choose one of them as b+. When α+

1 and α+
2 are on the bound (i.e.,

α1 = 0 or α1 = C and α2 = 0 or α2 = C), all values between b+1 and b+2 satisfy
the KKT conditions and we can let b+ = (b+1 + b+2 )/2.

18


	Hyperplane and Margin
	Support Vector Machine
	Formulation
	Preliminary Knowledge of Convex Optimization
	Optimization Problems and Lagrangian Duality
	Complementary Slackness
	Karush-Kuhn-Tucker (KKT) Conditions
	Convex Optimization Problems


	Duality of SVM
	Kernel based SVM
	Regularized SVM
	Sequential Minimal Optimization Algorithm

