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Sample Space, Events and Probability

A sample space S is the set of all possible outcomes of a (conceptual
or physical) random experiment

Event A is a subset of the sample space S
P(A) is the probability that event A happens

It is a function that maps the event A onto the interval [0, 1].
P(A) is also called the probability measure of A

Kolmogorov axioms

Non-negativity: p(A) ≥ 0 for each event A
P(S) = 1
σ-additivity: For disjoint events {Ai}i such that Ai

⋂
Aj = ∅ for ∀i 6= j

P(
∞⋃
i=1

Ai ) =
∞∑
i=1

P(Ai )
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Sample Space, Events and Probability (Contd.)

Some consequences

P(∅) = 0

P(A
⋃

B) = P(A) + P(B)− P(A
⋂

B)

P(A¬) = 1− P(A)
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Conditional Probability

Definition of conditional probability: Fraction of worlds in which event
A is true given event B is true

P(A | B) =
P(A,B)

P(B)
, P(A,B) = P(A | B)P(B)

Corollary: The chain rule

P (A1,A2, · · · ,Ak) =
n∏

k=1

P (Ak | A1,A2, · · · ,Ak−1)

Example:

P(A4,A3,A2,A1) = P(A4 | A3,A2,A1)P(A3 | A2,A1)P(A2 | A1)P(A1)
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Conditional Probability (Contd.)

Real valued random variable is a function of the outcome of a ran-
domized experiment

X : S → R

Examples: Discrete random variables (S is discrete)

X (s) = True if a randomly drawn person (s) from our class (S) is female
X (s) = The hometown X (s) of a randomly drawn person (s) from (S)

Examples: Continuous random variables (S is continuous)

X (s) = r be the heart rate of a randomly drawn person s in our class S
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Random Variables

Real valued random variable is a function of the outcome of a ran-
domized experiment

X : S → R

For continuous random variable X

P(a < X < b) = P({s ∈ S : a < X (s) < b})

For discrete random variable X

P(X = x) = P({s ∈ S : X (s) = x})
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Probability Distribution

Probability distribution for discrete random variables

Suppose X is a discrete random variable

X : S → A

Probability mass function (PMF) of X : the probability of X = x

pX (x) = P(X = x)

Since
∑

x∈A P(X = x) = 1, we have∑
x∈A

pX (x) = 1
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Probability Distribution (Contd.)

Probability distribution for continuous random variables

Suppose X is a continuous random variable

X : S → A

Probability density function (PDF) of X is a function fX (x) such that
for ∀a, b ∈ A with (a ≤ b)

P(a ≤ X ≤ b) =

∫ b

a

fX (x)dx
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Joint Probability Distribution

Joint probability distribution

Suppose both X and Y are discrete random variable
Joint probability mass function (PMF)

pX ,Y (x , y) = P(X = x ,Y = y)

Marginal probability mass function for discrete random variables

pX (x) =
∑
y

P(X = x ,Y = y) =
∑
y

P(X = x | Y = y)P(Y = y)

pY (y) =
∑
x

P(X = x ,Y = y) =
∑
x

P(Y = y | X = x)P(Y = x)

Extension to multiple random variables X1,X2,X3, · · · ,Xn

pX (x1, x2, · · · , xn) = P(X1 = x1,X2 = x2, · · · ,Xn = xn)
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Joint Probability Distribution (Contd.)

Joint probability distribution

Suppose both X and Y are continuous random variable
Joint probability density function (PDF) f (x , y)

P(a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2) =

∫ b1

a1

∫ b2

a2

f (x , y)dxdy

Marginal probability density functions

fX (x) =

∫ ∞
−∞

f (x , y)dy for −∞ < x <∞

fY (x) =

∫ ∞
−∞

f (x , y)dx for −∞ < y <∞

Extension to more than two random variables

P(a1 ≤ X1 ≤ b1, · · · , an ≤ Xn ≤ bn) =

∫ b1

a1

· · ·
∫ bn

an

f (x1, · · · , xn)dx1 · · · dxn
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Independent Random Variables

Two discrete random variables X and Y are independent if for any
pair of x and y

pX ,Y (x , y) = pX (x)pY (y)

Two continuous random variables X and Y are independent if for
any pair of x and y

fX ,Y (x , y) = fX (x)fY (y)

If the above equations do not hold for all (x , y), then X and Y are
said to be dependent
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Conditional Probability Distribution

Discrete random variables X and Y

Joint PMF p(x , y)

Marginal PMF pX (x) =
∑

y p(x , y)

The Conditional probability density function of Y given X = x

pY |X (y | x) =
p(x , y)

pX (x)
, ∀y

or

pY |X=x(y) =
p(x , y)

pX (x)
, ∀y

Conditional probability of Y = y given X = x

PY=y |X=x = pY |X (y | x)
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Conditional Probability Distribution (Contd.)

Continuous random variables X and Y

Joint PDF f (x , y)

Marginal PDF fX (x) =
∫
y f (x , y)dy

The Conditional probability density function of Y given X = x

fY |X (y | x) =
f (x , y)

fX (x)
, ∀y

or

fY |X=x(y) =
f (x , y)

fX (x)
, ∀y

Probability of a ≤ X ≤ b given Y = y

P(a1 ≤ X ≤ b1 | Y = y) =

∫ b

a
fX |Y=y (x)dx
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Conditional Probability Distribution (Contd.)

Continuous random variables X

Discrete random variable Y

Joint probability distribution

P(a ≤ X ≤ b,Y = y) = P(a ≤ X ≤ b | Y = y)P(Y = y)

where

P(a ≤ X ≤ b | Y = y) =

∫ b

a
fX |Y=y (x)dx

P(Y = y) = pY (y)
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Bayes’ Theorem

Bayes’ theorem (or Bayes’ rule) describes the probability of an event,
based on prior knowledge of conditions that might be related to the
event

P(A | B) =
P(B | A)P(A)

P(B)

In the Bayesian interpretation, probability measures a “degree of be-
lief”, and Bayes’ theorem links the degree of belief in a proposition
before and after accounting for evidence.

For proposition A and evidence B
P(A), the prior, is the initial degree of belief in A
P(A | B), the posterior, is the degree of belief having accounted for B

Another form:

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)

P(B | A)P(A) + P(B | A¬)P(A¬)

with A¬ being the complement of A
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Bayes’ Theorem (Contd.)

A: you have the flu

B: you just coughed

Assume: P(A) = 0.05, P(B | A) = 0.8, and P(B|A¬) = 0.2 (A¬

denotes of the complement of A)

Question: P(flue | cough) = P(A | B)?

P(A | B) =
P(B | A)P(A)

P(B)

=
P(B | A)P(A)

P(B | A)P(A) + P(B | A¬)P(A¬)

=
0.8 ∗ 0.05

0.8 ∗ 0.05 + 0.2 ∗ 0.95
≈ 0.18
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Bayes’ Theorem (Contd.)

Random variables X and Y , both of which are discrete

P(X = x | Y = y) =
P(Y = y | X = x)P(X = x)

P(Y = y)

Conditional PMF of X given Y = y

pX |Y=y (x) =
pY |X=x(y)pX (x)

pY (y)
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Bayes’ Theorem (Contd.)

Continuous random variable X and discrete random variable Y

fX |Y=y (x) =
P(Y = y | X = x)fX (x)

P(Y = y)

=
pY |X=x(y)fX (x)

pY (y)
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Bayes’ Theorem (Contd.)

Discrete random variable X and continuous random variable Y

P(X = x | Y = y) =
fY |X=x(y)P(X = x)

fY (y)

In another form

pX |Y=y (x) =
fY |X=x(y)p(x)

fY (y)
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Bayes’ Theorem (Contd.)

X and Y are both continuous

fX |Y=y (x) =
fY |X=x(y)fX (x)

fY (y)
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Prediction Based on Bayes’ Theorem

X is a random variable indicating the feature vector

Y is a random variable indicating the label

We perform a trial to obtain a sample x for test, and what is

P(Y = y | X = x) = pY |X (y | x) ?
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Prediction Based on Bayes’ Theorem (Contd.)

We compute pY |X (y | x) based on Bayes’ Theorem

pY |X (y | x) =
pX |Y (x | y)pY (y)

pX (x)
, ∀y

We calculate pX |Y (x | y) for ∀x , y and pY (y) for ∀y according to the
given training data

Fortunately, we do not have to calculate pX (x), because

arg max
y

pY |X (y | x) = arg max
y

pX |Y (x | y)pY (y)

pX (x)

= arg max
y

pX |Y (x | y)pY (y)
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Warm Up

The world is probabilistic

You randomly join SDU
You randomly choose this class
You may randomly fail this class

Feng Li (SDU) GDA, NB and EM September 27, 2023 25 / 122



Warm Up (Contd.)

Task: Identify if there is a cat in a given image.
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Warm Up (Contd.)

Images (to be classified or to be used for training) are given randomly

Some of them may contain a cat
Some of them may not
Whether there is a cat is random

An image is represented by a vector of features

The feature vectors are random, since the images are randomly given

Random variable X representing the feature vector (and thus the image)

The labels are random, since the images are randomly given

Random variable Y representing the label
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Warm Up (Contd.)

In linear regression and logistic regression, x and y are linked through
(deterministic) hypothesis function

y = hθ(x)

How to model the (probabilistic) relationship between feature vector X
and label Y ?

P(Y = y | X = x) =
P(X = x | Y = y)P(Y = y)

P(X = x)
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Warm Up (Contd.)

How to model the (probabilistic) relationship between feature vector X
and label Y ?

P(Y = y | X = x) =
P(X = x | Y = y)P(Y = y)

P(X = x)

P(Y = y | X = x): Given an image X = x (whose feature is x), what is
the probability of Y = y (with y = 1 denoting there is a cat and y = 0
denoting there is not)?
P(X = x | Y = y): Given an image with Y = y (whose label is y), what
is the probability that the image has its feature vector being X = x?
P(Y = y): Given a randomly picked image, what is the probability that
the image contains a cat?
P(X = x): Given a randomly picked image, what is the probability that
the image has its feature vector being X = x?
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Warm Up (Contd.)

How to model the (probabilistic) relationship between feature vector X
and label Y ?

P(Y = y | X = x) =
P(X = x | Y = y)P(Y = y)

P(X = x)

To predict y , we have to know

P(X = x | Y = y): Given an image with Y = y (whose label is y), what
is the probability that the image has its feature vector being X = x?
P(Y = y): Given a randomly picked image, what is the probability that
the image contains a cat?
P(X = x): Given a randomly picked image, what is the probability that
the image has its feature vector being X = x?
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Warm Up (Contd.)

In our case

If P(Y = 1 | X = x) ≥ P(Y = 0 | X = x), we conclude that there is a
cat
If P(Y = 0 | X = x) ≥ P(Y = 1 | X = x), we conclude there is not a
cat

How to compare P(Y = 0 | X = x) and P(Y = 1 | X = x)

P(Y = 0 | X = x) =
P(X = x | Y = 0)P(Y = 0)

P(X = x)

P(Y = 1 | X = x) =
P(X = x | Y = 1)P(Y = 1)

P(X = x)

We do not need to know P(X = x)
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Warm Up (Contd.)

We make classification according to

P(Y = y | X = x) =
P(X = x | Y = y)P(Y = y)

P(X = x)

To make classification, we have to know the following parameters

P(X = x | Y = y), ∀x , y

P(Y = y), ∀y

We do not need to know P(X = x), ∀x
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Warm Up (Contd.)

The probability that an image labeled by y has feature vector x

P(X = x | Y = y) = pX |Y (x | y), ∀x , y

The probability that an image is labeled by y

P(Y = y) = pY (y), ∀y

We compute the above parameters by learning from training data, but
how?
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Warm Up (Contd.)

Given a set of training data D = {x (i), y (i)}i=1,··· ,m
The training data are sampled in an i.i.d. manner

The probability of the i-th training data (x (i), y (i))

P(X = x (i),Y = y (i))

= P(X = x (i) | Y = y (i))P(Y = y (i))

= pX (x (i) | y (i))pY (y (i))

= pX |Y (x (i) | y (i))pY (y (i))

The probability of D

P(D) =
m∏
i=1

pX |Y (x (i) | y (i))pY (y (i))
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Warm Up (Contd.)

Log-likelihood function

`(θ) = log
m∏
i=1

pX ,Y (x (i), y (i))

= log
m∏
i=1

pX |Y (x (i) | y (i))pY (y (i))

=
m∑
i=1

(
log pX |Y (x (i) | y (i)) + log pY (y (i))

)
where

θ = {pX |Y (x | y), pY (y)}x ,y
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Warm Up (Contd.)

Suppose we have n features

X = [X1,X2, · · · ,Xn]T

The features are independent with each other

P(X = x | Y = y) = P(X1 = x1, · · · ,Xn = xn | Y = y)

=
n∏

j=1

P(Xj = xj | Y = y)

=
n∏

j=1

pXj |Y (xj | y)
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Warm Up (Contd.)

For each training data (x (i), y (i))

P(X = x (i) | Y = y (i))

= P(X1 = x
(i)
1 , · · · ,Xn = x

(i)
n | Y = y (i))

=
n∏

j=1

P(Xj = x
(i)
j | Y = y (i))

=
n∏

j=1

pXj |Y (x
(i)
j | y (i))

Feng Li (SDU) GDA, NB and EM September 27, 2023 37 / 122



Gaussian Distribution

Gaussian Distribution (Normal Distribution)

p(x ;µ, σ) =
1

(2πσ2)1/2
exp

(
− 1

2σ2
(x − µ)2

)
where µ is the mean and σ2 is the variance

Gaussian distributions are important in statistics and are often used in
the natural and social science to represent real-valued random variables
whose distribution are not known

Central limit theorem: The averages of samples of observations of
random variables independently drawn from independent distributions
converge in distribution to the normal, that is, become normally dis-
tributed when the number of observations is sufficiently large

Physical quantities that are expected to be the sum of many independent
processes (such as measurement errors) often have distributions that are
nearly normal.
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Multivariate Gaussian Distribution

Multivariate normal distribution in n-dimensions N (µ,Σ)

p(x ;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

Mean vector µ ∈ Rn

Covariance matrix Σ ∈ Rn×n

Mahalanobis distance: r 2 = (x − µ)TΣ−1(x − µ)

Σ is symmetric and positive semidefinite

Σ = ΦΛΦT

Φ is an orthonormal matrix, whose columns are eigenvectors of Σ
Λ is a diagonal matrix with the diagonal elements being the eigenvalues
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Multivariate Gaussian Distribution: A 2D Example

From left to right: Σ = I , Σ = 0.6I , Σ = 2I

From left to right: Σ = I , Σ =

[
1 0.5

0.5 1

]
, Σ =

[
1 0.8

0.8 1

]
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Multivariate Gaussian Distribution: A 2D Example

From left to right: µ =

[
1
0

]
, µ =

[
−0.5

0

]
, µ =

[
−1
−1.5

]
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Gaussian Discriminant Analysis (Contd.)

Y ∼ Bernoulli(ψ)

P(Y = 1) = ψ
P(Y = 0) = 1− ψ
Probability mass function

pY (y) = ψy (1− ψ)1−y , ∀y = 0, 1
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Gaussian Discriminant Analysis (Contd.)

X | Y = 0 ∼ N (µ0,Σ)

Conditional probability density function of X given Y = 0

pX |Y=0(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ0)TΣ−1(x − µ0)

)
Or

pX |Y (x | 0) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ0)TΣ−1(x − µ0)

)
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Gaussian Discriminant Analysis (Contd.)

X | Y = 1 ∼ N (µ1,Σ)

Conditional probability density function of X given Y = 1

pX |Y=1(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ1)TΣ−1(x − µ1)

)
Or

pX |Y (x | 1) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ1)TΣ−1(x − µ1)

)
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Gaussian Discriminant Analysis (Contd.)

In summary, for ∀y = 0, 1

pY (y) = ψy (1− ψ)1−y

pX |Y (x | y) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µy )TΣ−1(x − µy )

)

Feng Li (SDU) GDA, NB and EM September 27, 2023 45 / 122



Gaussian Discriminant Analysis (Contd.)

Given m sample data, the log-likelihood is

`(ψ, µ0, µ1,Σ)

= log
m∏
i=1

pX ,Y (x (i), y (i);ψ, µ0, µ1,Σ)

= log
m∏
i=1

pX |Y (x (i) | y (i);µ0, µ1,Σ)pY (y (i);ψ)

=
m∑
i=1

log pX |Y (x (i) | y (i);µ0, µ1,Σ) +
m∑
i=1

log pY (y (i);ψ)
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Gaussian Discriminant Analysis (Contd.)

The log-likelihood function

`(ψ, µ0, µ1,Σ) =
m∑
i=1

log pX |Y (x (i) | y (i);µ0, µ1,Σ) +
m∑
i=1

log pY (y (i);ψ)

For each training data (x (i), y (i))

If y (i) = 0

pX |Y (x (i) | y (i);µ0,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ0)TΣ−1(x − µ0)

)
If y (i) = 1

pX |Y (x (i) | y (i);µ1,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ1)TΣ−1(x − µ1)

)
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Gaussian Discriminant Analysis (Contd.)

The log-likelihood function

`(ψ, µ0, µ1,Σ) =
m∑
i=1

log pX |Y (x (i) | y (i);µ0, µ1,Σ) +
m∑
i=1

log pY (y (i);ψ)

For each training data (x (i), y (i))

pY (y (i);ψ) = ψy (i)
(1− ψ)1−y (i)
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Gaussian Discriminant Analysis (Contd.)

Maximizing `(ψ, µ0, µ1,Σ) through

∂

∂ψ
`(ψ, µ0, µ1,Σ) = 0

∇µ0`(ψ, µ0, µ1,Σ) = 0

∇µ1`(ψ, µ0, µ1,Σ) = 0

∇Σ`(ψ, µ0, µ1,Σ) = 0
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Gaussian Discriminant Analysis (Contd.)

Solutions:

ψ =
1

m

m∑
i=1

1{y (i) = 1}

µ0 =
m∑
i=1

1{y (i) = 0}x (i)/

m∑
i=1

1{y (i) = 0}

µ1 =
m∑
i=1

1{y (i) = 1}x (i)/

m∑
i=1

1{y (i) = 1}

Σ =
1

m

m∑
i=1

(x (i) − µy (i))(x (i) − µy (i))T

Proof (see Problem Set 2)
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Gaussian Discriminant Analysis (Contd.)

Given a test data sample x , we can calculate

pY |X (y = 1 | x) =
pX |Y (x | 1)pY (1)

pX (x)

=
pX |Y (x | 1)pY (1)

pX |Y (x | 1)pY (1) + pX |Y (x | 0)pY (0)

=
1

1 +
pX |Y (x |0)pY (0)

pX |Y (x |1)pY (1)
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Gaussian Discriminant Analysis (Contd.)

pX |Y (x | 0)pY (0)

pX |Y (x | 1)pY (1)

= exp

(
−1

2
(x − µ0)TΣ−1(x − µ0) +

1

2
(x − µ1)TΣ−1(x − µ1)

)
· 1− ψ

ψ

= exp

(
(µ0 − µ1)TΣ−1x +

1

2

(
µT

1 Σ−1µ1 − µT
0 Σ−1µ0

))
· exp

(
log

(
1− ψ
ψ

))
= exp

(
(µ0 − µ1)TΣ−1x +

1

2

(
µT

1 Σ−1µ1 − µT
0 Σ−1µ0

)
+ log

(
1− ψ
ψ

))
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Gaussian Discriminant Analysis (Contd.)

Assume

x :=

[
x
1

]
, θ =

[
(µ0 − µ1)TΣ−1

1
2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

)
+ log

(
1−ψ
ψ

)]
We have

pX |Y (x | 0)pY (0)

pX |Y (x | 1)pY (1)

= exp

(
(µ0 − µ1)TΣ−1x +

µT1 Σ−1µ1 − µT0 Σ−1µ0

2
+ log

(
1− ψ
ψ

))
= exp

(
θT x

)
Then

pY |X (1 | x) =
1

1 +
pX |Y (x |0)pY (y=0)

pX |Y (x |1)pY (1)

=
1

1 + exp(θT x)
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Gaussian Discriminant Analysis (Contd.)

Similarly, we have

pY |X (0 | x)

=
pX |Y (x | 0)pY (0)

pX (x)

=
pX |Y (x | 0)pY (0)

pX |Y (x | 1)pY (1) + pX |Y (x | 0)pY (y = 0)

=
1

1 +
pX |Y (x |1)pY (1)

pX |Y (x |0)pY (y=0)

=
1

1 + exp
(

(µ1 − µ0)TΣ−1x +
µT0 Σ−1µ0−µT1 Σ−1µ1

2 + log
(

ψ
1−ψ

))
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GDA and Logistic Regression

GDA model can be reformulated as logistic regression

Which one is better?

GDA makes stronger modeling assumptions, and is more data efficient
(i.e., requires less training data to learn “well”) when the modeling as-
sumptions are correct or at least approximately correct
Logistic regression makes weaker assumptions, and is significantly more
robust deviations from modeling assumptions
When the data is indeed non-Gaussian, then in the limit of large datasets,
logistic regression will almost always do better than GDA
In practice, logistic regression is used more often than GDA
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Gaussian Discriminant Analysis (Contd.)
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Lagrange Multiplier

Theorem (Lagrange Multiplier Theorem)

Let f : Rn → R be the objective function, gj : Rn → R (with j = 1, · · · ,m)
be the m constraints functions, all of which have continuous fist derivatives.
Let x∗ be an optimal solution to the following optimization problem

max f (x)

s.t. gi (x) = 0, i = 1, 2, · · · ,m

such that Rank(Dg(x∗)) = m < n where Rank(Dg(x∗)) denotes the matrix

of partial derivatives
[
∂gj
∂xi

]
. There exist unique Lagrange multipliers λ ∈ Rm

such that

∇f (x∗) =
m∑
j=1

λj∇gj(x∗)
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Lagrange Multiplier

Maximize f (x , y) subject to g(x , y) = 0

f (x , y) is maximized at point (x0, y0) where they have common tangent
line such that the gradient vectors are parallel

∇f (x0, y0) = λ∇g(x0, y0)

𝑔 𝑥, 𝑦 = 0

How about higher dimension?
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Lagrange Multiplier (Contd.)

Maximize f (x , y , z) subject to g(x , y , z) = 0

r(t) = (x(t), y(t), z(t)) be an arbitrary parameterized curve which lies
on the constraint surface and has (x(0), y(0), z(0)) = q

Suppose h(t) = f (x(t), y(t), z(t)) such that h(t) has a maximum at
t = 0

By the chain rule
h′(t) = ∇f |r(t) ·r ′(t)

Since t = 0 is a local maximum, we have

h′(0) = ∇f |q ·r ′(0) = 0

∇f |q is perpendicular to any curve on the constraint surface through
q, which implies ∇f |q is perpendicular to the surface

Since ∇g |q is also perpendicular to the surface, we have proved ∇fq
is parallel to ∇g |q
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Lagrange Multiplier (Contd.)

How about multiple constraints?

max f (x)

s.t. gi (x) = 0, i = 1, 2, · · · ,m

where x ∈ Rn, f : Rn → R, and gi : Rn → R for ∀i = 1, · · · ,m
∇f |q is “perpendicular” to all “constraint surface”

∇f |q is in the plane determined by ∇gi |q (i = 1, · · · ,m)
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Spam Email Classifier

Given an email with fixed length, is it a spam?

Training a (binary) classifier according to a data set {(x (i), y (i))}i=1,··· ,m

Each data sample is a n-dimensional vector

x (i) = (x
(i)
1 , x

(i)
2 , · · · , x (i)

n )

where x
(i)
j indicates if the j-th word in the dictionary occurring in the

email
For example,

x =



1
0
0
...
1
...
0



a
aardvark
aardwolf

...
buy

...
zygmurgy
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Spam Email Classifier (Contd.)

Given an email with fixed length, is it a spam?

Training a (binary) classifier according to a data set {(x (i), y (i))}i=1,··· ,m

Each data sample is a n-dimensional vector

x (i) = (x
(i)
1 , x

(i)
2 , · · · , x (i)

n )

where x
(i)
j ∈ {0, 1} indicates if the j-th word in the dictionary occurring

in the email
y (i) ∈ {0, 1} indicates if the i-th email is a spam
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Naive Bayes

Training data (x (i), y (i))i=1,··· ,m
x (i) is a n-dimensional vector

Each feature x
(i)
j ∈ {0, 1} (j = 1, · · · , n)

y (i) ∈ {0, 1}

The features and labels can be represented by random variables {Xj}j=1,··· ,n
and Y , respectively
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Naive Bayes (Contd.)

For ∀j 6= j ′, Naive Bayes assumes Xj and Xj ′ are conditionally indepen-
dent given Y

P(X1 = x1,X2 = x2, · · · ,Xn = xn | Y = y)

=
n∏

j=1

P(Xj = xj | X1 = x1,X2 = x2, · · · ,Xj−1 = xj−1,Y = y)

=
n∏

j=1

P(Xj = xj | Y = y)
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Naive Bayes (Contd.)

The key assumption in NB model

P(Y = y ,X1 = x1, · · · ,Xn = xn)

= P(X1 = x1, · · · ,Xn = xn | Y = y)P(Y = y)

= P(Y = y)
n∏

j=1

P(Xj = xj | Y = y)

= pY (y)
n∏

j=1

pXj |Y (xj | y)

Dropping the subscripts will not induce any ambiguity

P(Y = y ,X1 = x1, · · · ,Xn = xn) = p(y)
n∏

j=1

pj(xj | y)
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Naive Bayes (Contd.)

Two sets of parameters (denoted by Ω)

Probability mass function of Y

p(y) = P(Y = y)

where ∀y ∈ {0, 1}
Conditional probability mass function of Xj (j ∈ {1, 2, · · · , n}) given
Y = y (y ∈ {0, 1})

pj(x | y) = P(Xj = x | Y = y)

where ∀xj ∈ {0, 1}
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Maximum-Likelihood Estimates for Naive Bayes

Log-likelihood function is

`(Ω) = log
m∏
i=1

p(x (i), y (i))

=
m∑
i=1

log p(x (i), y (i))

=
m∑
i=1

log

p(y (i))
n∏

j=1

pj(x
(i)
j | y (i))


=

m∑
i=1

log p(y (i)) +
m∑
i=1

n∑
j=1

log pj(x
(i)
j | y (i))
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MLE for Naive Bayes (Contd.)

max
m∑
i=1

log p(y (i)) +
m∑
i=1

n∑
j=1

log pj(x
(i)
j | y (i))

s.t.
∑

y∈{0,1}

p(y) = 1

∑
x∈{0,1}

pj(x | y) = 1, ∀y , j

p(y) ≥ 0, ∀y

pj(x | y) ≥ 0, ∀j , x , y
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MLE for Naive Bayes (Contd.)

Theorem 1
The maximum-likelihood estimates for Naive Bayes model are as follows

p(y) =
count(y)

m
=

∑m
i=1 1(y (i) = y)

m
, ∀y

and

pj(x | y) =
countj(x | y)

count(y)
=

∑m
i=1 1(y (i) = y ∧ x

(i)
j = x)∑m

i=1 1(y (i) = y)
, ∀x , y , j
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MLE for Naive Bayes (Contd.)

Notation:

The number of training data whose label is y

count(y) =
m∑
i=1

1(y (i) = y), ∀y = 0, 1

The number of training data with the j-th feature being x and the label
being y

countj(x | y) =
m∑
i=1

1(y (i) = y ∧ x
(i)
j = x), ∀y = 0, 1, ∀x = 0, 1
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MLE for Naive Bayes (Contd.)

What if x ∈ {1, 2, · · · , u} and y ∈ {1, 2, · · · , k}?
Can we get the same results? Check it yourself!
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Classification by Naive Bayes

Given a test sample x̃ = [x̃1, x̃2, · · · , x̃n]T , we have

P(Y = y | X1 = x̃1, · · · ,Xn = x̃n)

=
P(X1 = x̃1, · · · ,Xn = x̃n | Y = y)P(Y = y)

P(X1 = x̃1, · · · ,Xn = x̃n)

=
P(Y = y)

∏n
j=1 P(Xj = x̃j | Y = y)

P(X1 = x̃1, · · · ,Xn = x̃n)

=
p(y)

∏n
j=1 pj(x̃j | y)

p(x̃1, · · · , x̃n)

Therefore, the output of the Naive Bayes model is

arg max
y∈{0,1}

p(y)
n∏

j=1

pj(x̃j | y)
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Classification by Naive Bayes (Contd.)

Example: y = 0, 1

P(Y = 0 | X1 = x̃1, · · · ,Xn = x̃n) =
pY (0)

∏n
j=1 pXj |Y (x̃j | 0)

pX (x̃1, · · · , x̃n)

P(Y = 1 | X1 = x̃1, · · · ,Xn = x̃n) =
pY (1)

∏n
j=1 pXj |Y (x̃j | 1)

pX (x̃1, · · · , x̃n)
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Laplace Smoothing

There may exist some feature, e.g., Xj∗ , such that Xj∗ = 1 for some
x∗ may never happen in the training data

pj∗(xj∗ = 1 | y) =

∑m
i=1 1(y (i) = y ∧ x

(i)
j∗ = 1)∑m

i=1 1(y (i) = y)
= 0, ∀y = 0, 1

As a result, given a test data x with xj∗ = 1

p(y | x) =
p(y)

∏n
j=1 pj(xj | y)∑

y

∏n
j=1 pj(xj | y)p(y)

=
0

0
, ∀y = 0, 1
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Laplace Smoothing (Contd.)

This is unreasonable!!!

How can we resolve this problem?

Laplace smoothing:

p(y) =

∑m
i=1 1(y (i) = y) + 1

m + k

pj(x | y) =

∑m
i=1 1(y (i) = y ∧ x

(i)
j = x) + 1∑m

i=1 1(y (i) = y) + vj

where k is number of the possible values of y (k=2 in our case), and
vj is the number of the possible values of the j-th feature (vj = 2 for
∀j = 1, · · · , n in our case)
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Naive Bayes for Multinomial Distribution

Let’s go back to the spam classification problem

Each training sample (as well as the test data) has different length

x (i) = [x
(i)
1 , x

(i)
2 , · · · , x (i)

ni ]T

The j-th feature of x (i) takes a finite set of values

x
(i)
j ∈ {1, 2, · · · , v}, for ∀j = 1, · · · , ni

For example, x
(i)
j indicates the j-th word in the email

Specifically, x
(i)
j = 3 implies the j-th word in the email is the 3rd on in

the dictionary
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Naive Bayes for Multinomial Distribution (Contd.)

Assumptions:

Each training sample involves a different number of features

x (i) = [x
(i)
1 , x

(i)
2 , · · · , x (i)

ni ]T

The j-th feature of x (i) takes a finite set of values

x
(i)
j ∈ {1, 2, · · · , v}, for ∀j = 1, · · · , ni

For each training data, the features are i.i.d.

P(Xj = t | Y = y) = p(t | y), for ∀j = 1, · · · , ni

p(t | y) ≥ 0 is the conditional probability mass function of Xj | Y = y∑v
t=1 p(t | y) = 1
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Naive Bayes for Multinomial Distribution (Contd.)

Assumptions:

Each training sample involves a different number of features

x (i) = [x
(i)
1 , x

(i)
2 , · · · , x (i)

ni ]T

The j-th feature of x (i) takes a finite set of values, x
(i)
j ∈ {1, 2, · · · , v}

For each training data (x (i), y (i)) where x (i) is a ni -dimensional vector

P(Y = y (i)) = p(y (i))

P(X = x (i) | Y = y (i)) =

ni∏
j=1

p(x
(i)
j | y (i))
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Naive Bayes for Multinomial Distribution (Contd.)

Log-likelihood function (Ω = {p(y), p(t | y)}y∈{0,1},t∈{1,··· ,v})

`(Ω) = log
m∏
i=1

p(x (i), y (i))

=
m∑
i=1

log p(x (i) | y (i))p(y (i))

=
m∑
i=1

log p(y (i))

ni∏
j=1

p(x
(i)
j | y (i))

=
m∑
i=1

ni∑
j=1

log p(x
(i)
j | y (i)) +

m∑
i=1

log p(y (i))
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Naive Bayes for Multinomial Distribution (Contd.)

Problem formulation

max `(Ω) =
m∑
i=1

ni∑
j=1

log p(x
(i)
j | y (i)) +

m∑
i=1

log p(y (i))

s.t.
∑

y∈{0,1}

p(y) = 1,

v∑
t=1

p(t | y) = 1, ∀y = 0, 1

p(y) ≥ 0, ∀y = 0, 1

p(t | y) ≥ 0, ∀t = 1, · · · , v , ∀y = 0, 1
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Naive Bayes for Multinomial Distribution (Contd.)

Solution

p(t | y) =

∑m
i=1 1(y (i) = y)count(i)(t)∑m

i=1 1(y (i) = y)
∑v

t=1 count(i)(t)

p(y) =

∑m
i=1 1(y (i) = y)

m

where count(i)(t) =

ni∑
j=1

1(x
(i)
j = t)

Check them by yourselves!

What if y = 1, 2, · · · , k?
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Naive Bayes for Multinomial Distribution (Contd.)

Laplace smoothing

ψ(t | y) =

∑m
i=1 1(y (i) = y)count(i)(t) + 1∑m

i=1 1(y (i) = y)
∑v

t=1 count(i)(t) + v

ψ(y) =

∑m
i=1 1(y (i) = y) + 1

m + k
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Convex Functions

A set C is convex if the line segment between any two points in C lies
in C , i.e., for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C

A function f : Rn → R is convex, if domf is a convex set and if for all
x , y ∈ domf and λ with 0 ≤ λ ≤ 1, we have

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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Convex Functions (Contd.)

First-order conditions: Suppose f is differentiable (i.e., its gradient ∇f
exists at each point in domf , which is open). Then, f is convex if and
only if domf is convex and

f (y) ≥ f (x) +∇f (x)T (y − x)

holds for ∀x , y ∈ domf
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Convex Functions (Contd.)

Second-order conditions: Assume f is twice differentiable (i.t., its Hes-
sian matrix or second derivative ∇2f exists at each point in domf ,
which is open), then f is convex if and only if domf is convex and its
Hessian is positive semidefinite: for ∀x ∈ domf ,

∇2f � 0
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Jensen’s Inequality

Let f be a convex function, then

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

where λ ∈ [0, 1]

Jensen’s Inequality

Let f (x) be a convex function defined on an interval I. If x1, x2, · · · , xN ∈
I and λ1, λ2, · · · , λN ≥ 0 with

∑N
i=1 λi = 1

f (
N∑
i=1

λixi ) ≤
N∑
i=1

λi f (xi )
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The Proof of Jensen’s Inequality

When N = 1, the result is trivial

When N = 2,

f (λ1x1 + λ2x2) ≤ λ1f (x1) + λ2f (x2)

due to convexity of f (x)

When N ≥ 3, the proof is by induction

We assume that, the Jensen’s inequality holds when N = k − 1.

f (
k−1∑
i=1

λixi ) ≤
k−1∑
i=1

λi f (xi )

We then prove that, the Jensen’s inequality still holds for N = k
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The Proof of Jensen’s Inequality (Contd.)

When N = k,

f (
k∑

i=1

λixi ) = f (
k−1∑
i=1

λixi + λkxk)

= f ((1− λk)
k−1∑
i=1

λi
1− λk

xi + λkxk)

≤ (1− λk)f (
k−1∑
i=1

λi
1− λk

xi ) + λk f (xk)

≤ (1− λk)
k−1∑
i=1

λi
1− λk

f (xi ) + λk f (xk)

=
k−1∑
i=1

λi f (xi ) + λk f (xk) =
k∑

i=1

λi f (xi )
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The Probabilistic Form of Jensen’s Inequality

The inequality can be extended to infinite sums, integrals, and expected
values

If p(x) ≥ 0 on S ⊆ domf and
∫
S p(x)dx = 1, we have

f (

∫
S

p(x)xdx) =

∫
S

p(x)f (x)dx

Assuming X is a random variable and P is a probability distribution on
sample space S, we have

f [E (X )] ≤ E [f (X )]

The equality holds if X is a constant
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Jensen’s inequality for Concave Function

Assume f be a concave function

f (
N∑
i=1

λixi ) ≥
N∑
i=1

λi f (xi )

The probabilistic form

f (E [X ]) ≥ E [f (X )]

Example: f (x) = log x

log(
∑N

i=1 λixi ) ≥
∑N

i=1 λi log(xi )

log(E [X ]) ≥ E [log(X )]
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The Expectation-Maximization (EM) Algorithm

A training set {x (1), x (2), · · · , x (m)} (without labels)

The log-likelihood function

`(θ) = log
m∏
i=1

p(x (i); θ)

=
m∑
i=1

log
∑
z(i)∈Ω

p(x (i), z(i); θ)

θ denotes the full set of unknown parameters in the model
z (i) ∈ Ω is so-called “latent variable”
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The EM Algorithm (Contd.)

Our goal is to maximize the log-likelihood function

`(θ) =
m∑
i=1

log
∑
z(i)∈Ω

p(x (i), z(i); θ)

The basic idea of EM algorithm

Repeatedly construct a lower-bound on ` (E-step)
Then optimize that lower-bound (M-step)
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The EM Algorithm (Contd.)

Qi : The probability distribution of the (latent) variable of the i-th
training sample ∑

z∈Ω

Qi (z) = 1, Qi (z) ≥ 0

We have

`(θ) =
m∑
i=1

log
∑
z(i)∈Ω

p(x (i), z(i); θ)

=
m∑
i=1

log
∑
z(i)∈Ω

Qi (z(i))
p(x (i), z(i); θ)

Qi (z(i))
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The EM Algorithm (Contd.)

Re-visit the log-likelihood function

`(θ) =
m∑
i=1

log
∑
z(i)∈Ω

Qi (z(i))
p(x (i), z(i); θ)

Qi (z(i))

=
m∑
i=1

log E

[
p(x (i), z(i); θ)

Qi (z(i))

]
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The EM Algorithm (Contd.)

Since log(·) is a concave function, according to Jensen’s inequality, we
have

log

(
E

[
p(x (i), z(i); θ)

Qi (z(i))

])
≥ E

[
log

(
p(x (i), z(i); θ)

Qi (z(i))

)]

Then, the log-likelihood function

`(θ) =
m∑
i=1

log

(
E

[
p(x (i), z(i); θ)

Qi (z(i))

])

≥
m∑
i=1

E

[
log

(
p(x (i), z(i); θ)

Qi (z(i))

)]

=
m∑
i=1

∑
z(i)∈Ω

Qi (z(i)) log
p(x (i), z(i); θ)

Qi (z(i))
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The EM Algorithm (Contd.)

For any set of distributions Qi , `(θ) has a lower bound

`(θ) ≥
m∑
i=1

∑
z(i)∈Ω

Qi (z(i)) log
p(x (i), z(i); θ)

Qi (z(i))

Tighten the lower bound (i.e., let the equality hold)

The equality in the Jensen’s inequality holds if

p(x (i), z (i); θ)

Qi (z (i))
= c

where c is a constant
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The EM Algorithm (Contd.)

Tighten the lower bound (i.e., let the equality hold)

The equality in the Jensen’s inequality holds if

p(x (i), z (i); θ)

Qi (z (i))
= c

where c is a constant
Since ∑

z(i)∈Ω

Qi (z (i)) = 1

we have ∑
z(i)∈Ω

p(x (i), z (i); θ) = c
∑
z(i)∈Ω

Qi (z) = c
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Tighten the lower bound (i.e., let the equality hold)

We have 
p(x (i), z (i); θ)/Qi (z (i)) = c∑

z(i)∈Ω Qi (z) = 1∑
z(i)∈Ω p(x (i), z (i); θ) = c

Therefore,

Qi (z (i)) =
p(x (i), z (i); θ)

c

=
p(x (i), z (i); θ)∑

z(i)∈Ω p(x (i), z (i); θ)

=
p(x (i), z (i); θ)

p(x (i); θ)

= p(z (i) | x (i); θ)

Feng Li (SDU) GDA, NB and EM September 27, 2023 98 / 122



The EM Algorithm (Contd.)

Repeat the following step until convergence

(E-step) For each i , set

Qi (z (i)) := p(z (i) | x (i); θ)

(M-step) set

θ := arg max
θ

∑
i

∑
z(i)∈Ω

Qi (z (i)) log
p(x (i), z (i); θ)

Qi (z (i))
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Convergence

For the t-th iteration, the equality in the Jensen’s inequality holds with
respect to θ[t]

`(θ[t]) =
m∑
i=1

∑
z(i)

Q
[t]
i (z(i)) log

p(x (i), z(i); θ[t])

Q
[t]
i (z(i))

where Q
[t]
i (z(i)) = p(z(i) | x (i); θ[t])

θ[t+1] is then obtained by maximizing the right hand side of the above
equation
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Convergence (Contd.)

Since `(θ) has a lower bound

`(θ) ≥
m∑
i=1

∑
z(i)∈Ω

Qi (z(i)) log
p(x (i), z(i); θ)

Qi (z(i))

for ∀Qi and θ, we have

`(θ[t+1]) ≥
m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x (i), z(i); θ[t+1])

Q
[t]
i (z(i))
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Convergence (Contd.)

Since

θ[t+1] = arg max
θ

m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x (i), z(i); θ)

Q
[t]
i (z(i))

we have

`(θ[t+1]) ≥
m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x (i), z(i); θ[t+1])

Q
[t]
i (z(i))

≥
m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x (i), z(i); θ[t])

Q
[t]
i (z(i))

= `(θ[t])
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Reviewing Mixtures of Gaussians

A training set {x (1), · · · , x (m)}
Mixture of Gaussians model

pX ,Z (x , z) = pX |Z (x | z)pZ (z)

Z ∈ {1, · · · , k} ∼ Multinomial(φ1, φ2, · · · , φk)

φj = P(Z = j) such that φj ≥ 0 and
∑k

j=1 φj = 1
X | Z = j ∼ N (µj ,Σj) (for j = 1, 2, · · · , k)
Z ’s are so-called latent random variables, since they are hidden/unobserved
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Reviewing Mixtures of Gaussians (Contd.)

The log-likelihood function

`(φ, µ,Σ) =
m∑
i=1

log p(x (i);φ, µ,Σ)

=
m∑
i=1

log
k∑

z(i)=1

p(x (i) | z(i);µ,Σ)p(z(i);φ)
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Applying EM Algorithm to Mixtures of Gaussians

Repeat the following steps until convergence

(E-step) For each i , j , set

ω
(i)
j =

p(x (i) | z (i) = j ;µ,Σ)p(z (i) = j ;φ)∑k
l=1 p(x (i) | z (i) = l ;µ,Σ)p(z (i) = l ;φ)

(M-step) Update the parameters

φj =
1

m

m∑
i=1

ω
(i)
j

µj =

∑m
i=1 ω

(i)
j x (i)∑m

i=1 ω
(i)
j

Σj =

∑m
i=1 ω

(i)
j (x (i) − µj)(x (i) − µj)

T∑m
i=1 ω

(i)
j
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Applying EM Algorithm to MG (Contd.)

(E-step) For each i , j , set

ω
(i)
j = Qi (z(i) = j)

= p(z(i) = j | x (i);φ, µ,Σ)

=
p(x (i) | z(i) = j ;µ,Σ)p(z(i) = j ;φ)∑k
l=1 p(x (i) | z(i) = l ;µ,Σ)p(z(i) = l ;φ)

where

p(x (i) | z (i) = j ;µj ,Σj) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x (i) − µj)

TΣ−1
j (x (i) − µj)

)
p(z (i) = j ;φ) = φj
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Applying EM Algorithm to MG (Contd.)

(M-step) Maximizing

m∑
i=1

∑
z(i)

Qi (z (i)) log
p(x (i), z (i);φ, µ,Σ)

Qi (z (i))

=
m∑
i=1

k∑
j=1

Qi (z (i) = j) log
p(x (i) | z (i) = j ;µ,Σ)p(z (i) = j ;φ)

Qi (z (i) = j)

=
m∑
i=1

k∑
j=1

ω
(i)
j log

1
(2π)n/2|Σj |1/2 exp

(
− 1

2 (x (i) − µj)
TΣ−1

j (x (i) − µj)
)
φj

ω
(i)
j

= −
m∑
i=1

k∑
j=1

ω
(i)
j

[
log
(

(2π)
n
2 |Σj |

1
2

)
+

1

2
(x (i) − µj)

TΣ−1
j (x (i) − µj)

]

+
m∑
i=1

k∑
j=1

ω
(i)
j log φj −

m∑
i=1

k∑
j=1

ω
(i)
j logω

(i)
j
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Applying EM Algorithm to MG: Calculating µ

Since

5µl

m∑
i=1

k∑
j=1

ω
(i)
j log

1
(2π)n/2|Σj |1/2 exp

(
− 1

2 (x (j) − µj)
TΣ−1

j (x (j) − µj)
)
φj

ω
(i)
j

= 5µl

m∑
i=1

k∑
j=1

ω
(i)
j

1

2
(x (i) − µj)

TΣ−1
j (x (i) − µj)

=
1

2

m∑
i=1

ω
(i)
l 5µl

(
2µT

l Σ−1
l x (i) − µT

l Σ−1
l µl

)
=

m∑
i=1

ω
(i)
l

(
Σ−1

l x (i) − Σ−1
l µl

)
= 0

we have

µl =

∑m
i=1 ω

(i)
l x (i)∑m

i=1 ω
(i)
l
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Applying EM Algorithm to MG: Calculating φ

Our problem becomes

max

m∑
i=1

k∑
j=1

ω
(i)
j log φj

s.t.

k∑
j=1

φj = 1

Using the theory of Lagrange multiplier

φj =
1

m

m∑
i=1

ω
(i)
j
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Applying EM Algorithm to MG: Calculating Σ

Minimizing

m∑
i=1

k∑
j=1

ω
(i)
j

[
log
(

(2π)
n
2 |Σj |

1
2

)
+

1

2
(x (i) − µj)TΣ−1

j (x (i) − µj)
]

=
n log 2π

2

m∑
i=1

k∑
j=1

ω
(i)
j +

1

2

m∑
i=1

k∑
j=1

ω
(i)
j log |Σj |

+
1

2

m∑
i=1

k∑
j=1

ω
(i)
j (x (i) − µj)TΣ−1

j (x (i) − µj)
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Applying EM Algorithm to MG: Calculating Σ (Contd’)

Minimizing

1

2

m∑
i=1

k∑
j=1

ω
(i)
j log |Σj |+

1

2

m∑
i=1

k∑
j=1

ω
(i)
j (x (i) − µj)TΣ−1

j (x (i) − µj)

Therefore, we have

∇Σj

 m∑
i=1

k∑
j=1

ω
(i)
j log |Σj |+

m∑
i=1

k∑
j=1

ω
(i)
j (x (i) − µj)

TΣ−1
j (x (i) − µj)

 = 0

for ∀j ∈ {1, · · · , k}
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Applying EM Algorithm to MG: Calculating Σ (Contd’)

By applying

∇X tr(AX−1B) = −(X−1BAX−1)T

∇A|A| = |A|(A−1)T

We get a solution

Σj =

∑m
i=1 ω

(i)
j (x (i) − µj)(x (i) − µj)T∑m

i=1 ω
(i)
j

where j = 1, · · · , k
Check the derivations by yourself!
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Naive Bayes with Missing Labels

For any x , we have

p(x) =
k∑

y=1

p(x , y) =
k∑

y=1

p(y)
n∏

j=1

pj(xj | y)


The log-likelihood function is then defined as

`(θ) =
m∑
i=1

log p(x (i)) =
m∑
i=1

log
k∑

y=1

p(y)
n∏

j=1

pj(x
(i)
j | y)


Maximizing `(θ) subject to the following constraints

p(y) ≥ 0 for ∀y ∈ {1, · · · , k}, and
∑k

y=1 p(y) = 1
For ∀y ∈ {1, · · · , k}, j ∈ {1, · · · , n}, xj ∈ {0, 1}, pj(xj | y) ≥ 0
For ∀y ∈ {1, · · · , k} and j ∈ {1, · · · , n},

∑
xj∈{0,1} pj(xj | y) = 1
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Naive Bayes with Missing Labels (Contd.)

When labels are given

`(θ) =
m∑
i=1

log

p(y (i))
n∏

j=1

pj(x
(i)
j | y (i))


When labels are missed

`(θ) =
m∑
i=1

log
k∑

y=1

p(y)
n∏

j=1

pj(x
(i)
j | y)
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Applying EM Algorithm to Naive Bayes

Repeat the following steps until convergence

(E-step) For each i = 1, · · · ,m and y = 1, · · · , k set

Qi (y) = p(y (i) = y | x (i)) =
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y ′=1 p(y ′)
∏n

j=1 pj(x
(i)
j | y ′)

(M-step) Update the parameters

p(y) =
1

m

m∑
i=1

Qi (y), ∀y

pj(x | y) =

∑
i :x

(i)
j =x

Qi (y)∑m
i=1 Qi (y)

, ∀x , y
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Applying EM Algorithm to NB: E-Step

Qi (y) = p(y | x (i))

=
p(x (i) | y)p(y)

p(x (i))

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y ′=1 p(x (i), y ′)

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y ′=1 p(x (i) | y ′)p(y ′)

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y ′=1 p(y ′)
∏n

j=1 pj(x
(i)
j | y ′)
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Applying EM Algorithm to NB: M-Step

m∑
i=1

k∑
y=1

Qi (y) log
p(x (i), z (i) = y)

Qi (y)

=
m∑
i=1

k∑
y=1

Qi (y) log
p(x (i) | z (i) = y)p(z (i) = y)

Qi (y)

=
m∑
i=1

k∑
y=1

Qi (y) log
p(y)

∏n
j=1 pj(x

(i)
j | y)

Qi (y)

=
m∑
i=1

k∑
y=1

Qi (y)

log p(y) +
n∑

j=1

log pj(x
(i)
j | y)− log Qi (y)


=

m∑
i=1

k∑
y=1

Qi (y) log p(y) +
m∑
i=1

k∑
y=1

n∑
j=1

Qi (y) log pj(x
(i)
j | y)

−
m∑
i=1

k∑
y=1

Qi (y) log Qi (y)
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Applying EM Algorithm to NB: M-Step (Contd.)

m∑
i=1

k∑
y=1

n∑
j=1

Qi (y) log pj(x
(i)
j | y)

=
k∑

y=1

n∑
j=1

 ∑
i :x

(i)
j =0

Qi (y)

 log pj(x = 0 | y)

+
k∑

y=1

n∑
j=1

 ∑
i :x

(i)
j =1

Qi (y)

 log pj(x = 1 | y)

=
k∑

y=1

n∑
j=1

∑
x∈{0,1}

 ∑
i :x

(i)
j =x

Qi (y)

 log pj(x | y)
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Applying EM Algorithm to NB: M-Step (Contd.)

max
m∑
i=1

k∑
y=1

Qi (y) log p(y) +
k∑

y=1

n∑
j=1

∑
x∈{0,1}

 ∑
i :x

(i)
j =x

Qi (y)

 log pj(x | y)

s.t.
k∑

y=1

p(y) = 1

∑
x∈{0,1}

pj(x | y) = 1, ∀y = 1, · · · , k , ∀j = 1, · · · , n

p(y) ≥ 0, ∀y = 1, · · · , k
pj(x | y) ≥ 0, ∀j = 1, · · · , n, ∀x = 0, 1, ∀y = 1, · · · , k
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Applying EM Algorithm to NB: M-Step (Contd.)

Problem I

max
m∑
i=1

k∑
y=1

Qi (y) log p(y)

s.t.
k∑

y=1

p(y) = 1

p(y) ≥ 0, ∀y = 1, · · · , k

Solution (by Lagrange multiplier):

p(y) =

∑m
i=1 Qi (y)∑m

i=1

∑k
y=1 Qi (y)

=
1

m

m∑
i=1

Qi (y)
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Applying EM Algorithm to NB: M-Step (Contd.)

Problem II

max
k∑

y=1

n∑
j=1

∑
x∈{0,1}

 ∑
i :x

(i)
j =x

Qi (y)

 log pj(x | y)

s.t.
∑

x∈{0,1}

pj(x | y) = 1, ∀y = 1, · · · , k , ∀j = 1, · · · , n

pj(x | y) ≥ 0, ∀j = 1, · · · , n, ∀x = 0, 1, ∀y = 1, · · · , k

Solution (by Lagrange multiplier):

pj(x | y) =

∑
i :x

(i)
j =x

Qi (y)∑
x ′∈{0,1}

∑
i :x

(i)
j =x ′

Qi (y)
=

∑
i :x

(i)
j =x

Qi (y)∑m
i=1 Qi (y)
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Thanks!

Q & A
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