
Lecture Notes on Gaussian Discriminant

Analysis, Naive Bayes and EM Algorithm

Feng Li
fli@sdu.edu.cn

Shandong University, China

1 Bayes’ Theorem and Inference

Bayes’ theorem is stated mathematically as the following equation

P (A | B) =
P (B | A)P (A)

P (B)
(1)

where P (A | B) is the conditional probability of event A given event B happens,
P (B | A) is the conditional probability of event B given A is true, and P (A)
and P (B) are probability of observing A and B, respectively.

We now introduce Bayesian inference by taking image recognition as an
example. Our aim is to identify if there is a cat in a given image. We assume
X = [X1, X2, · · · , Xn]T is a random variable representing the feature vector of
the given image, and Y ∈ {0, 1} is a random variable representing if there is a
cat in the given image. Now, given an image x = [x1, x2, · · · , xn]T , out goal is
to calculate

P (Y = y | X = x) =
P (X = x | Y = y)P (Y = y)

P (X = x)
(2)

where y ∈ {0, 1}. In particular, P (Y = y | X = x) is the probability that
the image is labeled by y given that the image can be represented by feature
vector x, P (X = x | Y = y) is the probability that the image has its feature
vector being x given that it is labeled by y, P (Y = y) is the probability that a
randomly picked image is labeled by y, and P (X = x) is the probability that a
randomly picked image has label y. In our case, we make decision by calculating

P (Y = 0 | X = x) =
P (X = x | Y = 0)P (Y = 0)

P (X = x)
(3)

P (Y = 1 | X = x) =
P (X = x | Y = 1)P (Y = 1)

P (X = x)
(4)

We argue that there is a cat in a given image, if

P (Y = 1 | X = x) ≥ P (Y = 0 | X = x);

otherwise, there is not a cat. Fortunately, when comparing P (Y = 0 | X = x)
and P (Y = 1 | X = x), we do not have to calculate P (X = x), since both of

1

them share the same denominator P (X = x). Therefore, to perform Bayesian
interference, the parameters we have to compute are only P (X = x | Y = y)
and P (Y = y).

Recalling that, in linear regression and logistic regression, we use hypothesis
function y = hθ(x) to model the relationship between feature vector x and label
y, while we now rely on Byes’ theorem to characterize the relationship through
parameters θ = {P (X = x | Y = y), P (Y = y)}x,y.

2 Gaussian Discriminant Analysis

In Gaussian Discriminate Analysis (GDA) model, we have the following as-
sumptions:

• A1: Y ∼ Bernoulli(ψ): Y follows a Bernoulli distribution parameterized
by ψ, and we thus have P(Y = 1) = ψ and P(Y = 0) = 1 − ψ. we then
define the corresponding probability mass function (PMF) as

pY (y;ψ) = P(Y = y) = ψy(1− ψ)1−y (5)

• A2: X | Y = 0 ∼ N (µ0,Σ): The conditional probability of continuous
random variable X given Y = 0 is a Gaussian distribution parameterized
by µ0 and Σ, such that the corresponding probability density function
(PDF) is defined as

pX|Y (x | 0) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ0)TΣ−1(x− µ0)

)
(6)

• A3: X | Y = 1 ∼ N (µ1,Σ): The conditional probability of continuous
random variable X given Y = 1 is a Gaussian distribution parameterized
by µ1 and Σ, such that the corresponding PDF is given by

pX|Y (x | 1) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
(7)

Given m sample data {(x(i), y(i))}i=1,··· ,m, the log-likelihood is defined as

`(ψ, µ0, µ1,Σ) = log

m∏
i=1

pX,Y (x(i), y(i);ψ, µ0, µ1,Σ)

= log

m∏
i=1

pX|Y (x(i) | y(i);µ0, µ1,Σ)pY (y(i);ψ)

=

m∑
i=1

log pX|Y (x(i) | y(i);µ0, µ1,Σ) +

m∑
i=1

log pY (y(i);ψ) (8)

where ψ, µ0, and σ are parameters. Substituting Eq. (5)∼(7) into Eq. (8) gives

2

us a full expression of `(ψ, µ0, µ1,Σ)

`(ψ, µ0, µ1,Σ)

=

m∑
i=1

log pX|Y (x(i) | y(i);µ0, µ1,Σ) +

m∑
i=1

log pY (y(i);ψ)

=
∑

i:y(i)=0

log

[
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ0)TΣ−1(x− µ0)

)]

+
∑

i:y(i)=1

log

[
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)]

+

m∑
i=1

logψy
(i)

(1− ψ)y
(i)

We then maximize the log-likelihood function `(ψ, µ0, µ1,Σ) so as to get the
optimal values for ψ, µ0, and σ, such that the resulting GDA model can best
fit the given training data. In particular, we let

∇µ0`(ψ, µ0, µ1,Σ) = 0

∇µ1`(ψ, µ0, µ1,Σ) = 0

∇Σ`(ψ, µ0, µ1,Σ) = 0

A careful derivative gives us

ψ =
1

m

m∑
i=1

1{y(i) = 1}

µ0 =

m∑
i=1

1{y(i) = 0}x(i)/

m∑
i=1

1{y(i) = 0}

µ1 =

m∑
i=1

1{y(i) = 1}x(i)/

m∑
i=1

1{y(i) = 1}

Σ =
1

m

m∑
i=1

(x(i) − µy(i))(x(i) − µy(i))T

Now we can use the above results to calculate the expression of pY (y), pX|Y (x |
0), and pX|Y (x | 1) according to our assumptions (5)∼(7), and make predictions
according to Bayes’ theorem (see Eq. (2)). Specifically, given a test data featured
by x̃, we compare

P (Y = ỹ | X = x̃) = pY |X(ỹ | x̃) =
p(x̃ | ỹ)p(ỹ)

p(x̃)

where ỹ = 0, 1.

3 Gaussian Discriminant Analysis and Logistic
Regression

By far, we introduce two classification algorithms, Logistic Regression (LR) and
GDA. We now dive into investigating the relationship between them. Given a

3

test data sample x, we can calculate p(y = 1 | x) as follows

pY |X(1 | x) =
pX|Y (x | 1)pY (1)

pX(x)

=
pX|Y (x | 1)pY (1)

pX|Y (x | 1)pY (1) + pX|Y (x | 0)pY (0)

=
1

1 +
pX|Y (x|0)pY (0)

pX|Y (x|1)pY (1)

(9)

According to our assumptions (5)∼(7), we have

pX|Y (x | 0)pY (0)

pX|Y (x | 1)pY (1)

= exp

(
−1

2
(x− µ0)TΣ−1(x− µ0) +

1

2
(x− µ1)TΣ−1(x− µ1)

)
· 1− ψ

ψ

= exp

(
(µ0 − µ1)TΣ−1x+

1

2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

))
· exp

(
log

(
1− ψ
ψ

))
= exp

(
(µ0 − µ1)TΣ−1x+

1

2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

)
+ log

(
1− ψ
ψ

))
If we assume

x :=

[
x
1

]
θ =

[
(µ0 − µ1)TΣ−1

1
2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

)
+ log

(
1−ψ
ψ

)]

we have

pX|Y (x | 0)pY (0)

pX|Y (x | 1)pY (1)

= exp

(
(µ0 − µ1)TΣ−1x+

1

2

(
µT1 Σ−1µ1 − µT0 Σ−1µ0

)
+ log

(
1− ψ
ψ

))
= exp

(
θTx

)
(10)

By substituting (10) into Eq. (9), we finally represent p(y = 1 | x) as

pY |X(1 | x) =
1

1 + exp(θTx)
(11)

4

Similarly, we have

pY |X(0 | x)

=
pX|Y (x | 0)pY (0)

pX(x)

=
pX|Y (x | 0)pY (0)

pX|Y (x | 1)pY (1) + pX|Y (x | 0)pY (0)

=
1

1 +
pX|Y (x|1)pY (1)

pX|Y (x|0)pY (0)

=
1

1 + exp
(

(µ1 − µ0)TΣ−1x+
µT
0 Σ−1µ0−µT

1 Σ−1µ1

2 + log
(

ψ
1−ψ

))
Therefore, we conclude that GDA model can be reformulated as logistic

regression. But the question is, which one is better? GDA makes stronger
modeling assumptions, and is more data efficient (i.e., requires less training
data to learn “well”) when the modeling assumptions are correct or at least
approximately correct, while LR makes weaker assumptions, and is significantly
more robust deviations from modeling assumptions. Hence, when the data is
indeed non-Gaussian, then in the limit of large datasets, logistic regression will
almost always do better than GDA. In practice, logistic regression is used more
often than GDA

4 Naive Bayes

4.1 Assumption

Again, we assume that the m training data are denoted by {x(i), y(i)}i=1,··· ,m,

where x(i) is a n-dimensional vector with each component x
(i)
j ∈ {0, 1} (j =

1, · · · , n), and y(i) ∈ {1, · · · , k}. For brevity, we use [k] to denote set {1, 2, · · · k}.
Therefore, we have i ∈ [m], j ∈ [n] and y ∈ [k]. In Naive Bayes (NB) model,
the feature and label can be represented by random variables {Xj}j∈[n] and Y ,
respectively. Furthermore, for ∀j 6= j′, Naive Bayes assumes Xj and Xj′ are
conditionally independent given Y . Therefore, we have

P (X1 = x1, X2 = x2, · · · , Xn = xn | Y = y)

=

n∏
j=1

P (Xj = xj | X1 = x1, X2 = x2, · · · , Xj−1 = xj−1, Y = y)

=

n∏
j=1

P (Xj = xj | Y = y)

Moreover, P (Y = y,X1 = x1, · · · , Xn = xn) can be calculated as

P (Y = y,X1 = x1, · · · , Xn = xn)

= P (X1 = x1, · · · , Xn = xn | Y = y)P (Y = y)

= P (Y = y)

n∏
j=1

P (Xj = xj | Y = y)

5

By now, we have two set of parameters: i) P (Y = y) = pY (y) for ∀y ∈ [k],
and ii) P (Xj = xj | Y = y) = pXj |Y (xj | y) for ∀xj ∈ {0, 1} where j ∈ [n],
∀y ∈ [k]. For brevity, we drop the subscripts without inducing any ambiguity,

p(y) := pY (y)

pj(x | y) := pXj |Y (xj | y)

In another word, p(y) and pj(x | y) are the PMF and the conditional PMF of
Y and Xj | Y , respectively. More specifically, p(y) denotes the prior probability
of Y = y, while pj(xj | y) denotes the posterior probability of Xj = xj given
Y = y.

4.2 Problem Formulation

Given a set of m training data {x(i), y(i)}i∈[m], the log-likelihood function can
be defined by

`(Ω) = log

m∏
i=1

p(x(i), y(i))

=

m∑
i=1

log p(x(i), y(i))

=

m∑
i=1

log

p(y(i))

n∏
j=1

pj(x
(i)
j | y

(i))


=

m∑
i=1

log p(y(i)) +

m∑
i=1

n∑
j=1

log pj(x
(i)
j | y

(i)) (12)

where we use Ω to represent the set of parameters. Again, we would like to
maximize the above objective function with respect to {p(y)}y∈[k] and {pj(x |
y)}j∈[n],x∈{0,1},y∈[k]. Mathematically, our problem can be formulated as

max `(Ω) =

m∑
i=1

log p(y(i)) +

m∑
i=1

n∑
j=1

log pj(x
(i)
j | y

(i)) (13)

s.t.

k∑
y=1

p(y) = 1 (14)

∑
x∈{0,1}

pj(x | y) = 1, ∀y ∈ [k], j ∈ [n] (15)

p(y) ≥ 0, ∀y ∈ [k] (16)

pj(x | y) ≥ 0, ∀y ∈ [k], j ∈ [n], x ∈ {0, 1} (17)

4.3 Solutions to Naive Bayes

We calculate the optimal value of p(y) for ∀y ∈ [k], by applying Lagrange
multiplier method. Let α and βj(y) be the Lagrange multipliers associate with

6

constraint (14) and (15), respectively. The Lagrange function is defined as

L(Ω, α, β) =

m∑
i=1

log p(y(i)) +

m∑
i=1

n∑
j=1

log pj(x
(i)
j | y

(i))

−α

(
k∑
y=1

p(y)− 1

)

−
k∑
y=1

n∑
j=1

βj(y)

 ∑
x∈{0,1}

pj(x | y)− 1

 (18)

where β = {βj(y)}j∈[n],y∈[k]. According to the theory of Lagrange multiplier, if
there exits Ω∗ = {p∗(y), p∗j (x | y)}j∈[n],x∈{0,1},y∈[k] such that `(Ω∗) is a maxi-
mum of `(Ω), there exists α∗ and β∗ = {β∗j (y)}j∈[n],y∈[k] such that (Ω∗, α∗, β∗)
is a stationary point for the Lagrange function. To this end, we first calculate
the partial derivative of L(Ω, α, β) with respect to Ω, and let them be zeros.

Since

∂

∂p(y)
L(Ω, α, β) =

∑
i:y(i)=y

∂

∂p(y)
log p(y)− α =

count(y)

p(y)
− α = 0

where

count(y) =

m∑
i=1

1(y(i) = y), ∀y ∈ [k]

denotes the number of training data whose label is y, we have

p(y) =
count(y)

α
(19)

Substituting the above equation into (14), we get

k∑
y=1

p(y) =

k∑
y=1

count(y)

α
=
m

α
= 1

hence, α = m. According to (19),

p(y) =
count(y)

α
=

∑m
i=1 1(y(i) = y)

m
(20)

Similarly, by letting

∂

∂pj(x | y)
L(Ω, α, β) = 0

we get
countj(x | y)

pj(x | y)
− βj(y) = 0 (21)

where

countj(x | y) =

m∑
i=1

1(y(i) = y ∧ x(i)
j = x), ∀y ∈ [k], ∀x ∈ {0, 1}

7

denotes the number of training data with its j-th feature being x and label being
y, and hence, pj(x | y) can be written as

pj(x | y) =
countj(x | y)

βj(y)
(22)

Substituting the above equation into (15), we get

βj(y) = count(y)

for ∀j ∈ [n], y ∈ [k]. Therefore, according to Eq. (22)

pj(x | y) =
countj(x | y)

βj(y)
=

∑m
i=1 1(y(i) = y ∧ x(i)

j = x)∑m
i=1 1(y(i) = y)

(23)

Remark: We assume binary features (Xj ∈ {0, 1} for ∀j ∈ [n]) in the above
discussion. What if Xj ∈ {1, 2, · · · , v}? Can we get similar results? Check it
by yourselves!

4.4 Laplace Smoothing

Consider the following special case, in the give finite training data, x̄ never
happens for some j, such that you cannot find any training data without its j-
th feature being x̄. In this case, when calculating pj(x̄ | y), one trivial choice is to
let it being zero. It follows that, given a test data x = (x1, · · · , xj̄ = x̄, · · · , xn)
where the j̄-th feature is x̄, we have

p(y | x) = p(y)

n∏
j=1

pj(xj | y)

= p(y)p1(x1 | y)p1(x2 | y) · · · pj̄(x̄ | y) · · · pn(xn | y)

= 0

for ∀y. It is shown that, even the remaining features all have very “strong”
conditional probabilities, p(y | x) is forcibly set to be zero due to only one
feature value that does not appear in the finite training data. Apparently, this
is quite unreasonable! Similarly, when some of the label values (e.g., ȳ) doe not
appear in the given training data, we have

p(ȳ) =

∑m
i=1 1(y(i) = ȳ)

m
= 0

, such that for ∀x, we have p(y | x) = 0.
One method to address the above problem is Laplace smoothing. In partic-

ular, we set

p(y) =

∑m
i=1 1(y(i) = y) + 1

m+ k

pj(x | y) =

∑m
i=1 1(y(i) = y ∧ x(i)

j = x) + 1∑m
i=1 1(y(i) = y) + vj

8

where vj is the number of possible values of the j-th feature. In our case where
xj ∈ {0, 1} for ∀j ∈ [n], we have vj = 2 for ∀j. Note that, p(y) satisfies the
following two conditions

p(y) ≥ 0, ∀y ∈ [k]
k∑
y=1

p(y) =

k∑
y=1

∑m
i=1 1(y(i) = y) + 1

m+ k
=

∑k
y=1

∑m
i=1 1(y(i) = y) + k

m+ k
= 1

Similarly,

pj(x | y) ≥ 0, ∀j ∈ [n], x ∈ {0, 1}, y ∈ [k]∑
x∈{0,1}

pj(x | y) = 1, ∀j ∈ [n], y ∈ [k]

5 Naive Bayes for Multinomial Distribution

In this model, a training sample may involves a different number of features.
We assume that the i-th training sample x(i) has ni features. For ∀i ∈ [m], x(i)

has each of its features drawn from a sample space [v] = {1, 2, · · · , v} identically
and independently. Let Xj and Y be the random variables representing the j-th
feature and the label. We define

p(t | y) = P (Xj = t | Y = y)

for some j. In another word, p(t | y) is the conditional probability that t ∈ [v]
occurs once (at some position) in the feature vector given that the data sample
is labeled by y. Also, p(t | y) should respect the following conditions: i) p(t |
y) ≥ 0, and ii)

∑v
t=1 p(t | y) = 1. We also define

p(y) = P (Y = y)

for ∀y ∈ [k]. We denote by Ω the set of parameters, i.e., Ω = {p(y), p(t |
y)}t∈[v],y∈[k]

Given a set of m training data {(x(i), y(i))}i∈[m], the log-likelihood function

9

can be defined by

`(Ω) = log

m∏
i=1

p(x(i), y(i))

= log

m∏
i=1

p(x(i) | y(i))p(y(i))

= log

m∏
i=1

k∑
y=1

1(y(i) = y)p(x(i) | y)p(y)

=

m∑
i=1

log

(
k∑
y=1

1(y(i) = y)
(
p(x(i) | y)p(y)

))

=

m∑
i=1

k∑
y=1

1(y(i) = y) log
(
p(x(i) | y)p(y)

)

=

m∑
i=1

k∑
y=1

1(y(i) = y) log

p(y)

ni∏
j=1

p(x
(i)
j | y)


=

m∑
i=1

k∑
y=1

1(y(i) = y) log

(
p(y)

v∏
t=1

p(t | y)count
(i)(t)

)

=

m∑
i=1

k∑
y=1

1(y(i) = y)

(
log p(y) +

v∑
t=1

count(i)(t) log p(t | y)

)

where count(i)(t) =
∑ni

j=1 1(x
(i)
j = t) is the number of features in x(i) whose

values are t (i.e., how many time t occurs in x(i)).
By now, we formulate our NB model for multinomial distribution as follows

max `(Ω) =

m∑
i=1

k∑
y=1

1(y(i) = y)

(
log p(y) +

v∑
t=1

count(i)(t) log p(t | y)

)
s.t. p(y) ≥ 0, ∀y ∈ [k]

p(t | y) ≥ 0, ∀t ∈ [v] ∀y ∈ [k]
k∑
y=1

p(y) = 1,

v∑
t=1

p(t | y) = 1, ∀y ∈ [k]

Applying Lagrange multiplier, we get the following optimal solution to the above
optimization problem

p(t | y) =

∑m
i=1 1(y(i) = y)count(i)(t)∑m

i=1 1(y(i) = y)
∑v
t=1 count

(i)(t)

p(y) =

∑m
i=1 1(y(i) = y)

m

10

6 Expectation-Maximization Algorithm

We hereby look at Expectation-Maximization (EM) algorithm.

6.1 Convex Sets and Convex Functions

A set C is convex if the line segment between any two points in C lies in C, i.e.,
for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C

A function f : Rn → R is convex, if domf is a convex set and if for all
x, y ∈ domf and λ with 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

If
f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

f is said to be concave. One typical example of concave function is log.

6.2 Jensen’s Inequality

Theorem 1. Jensen’s Inequality Let f(x) be a convex function defined on an

interval I. If x1, x2, · · · , xN ∈ I and λ1, λ2, · · · , λN ≥ 0 with
∑N
i=1 λi = 1

f(

N∑
i=1

λixi) ≤
N∑
i=1

λif(xi) (24)

Proof. When N = 1, the result is trivial. When N = 2, we have

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)

due to convexity of f(x). When N ≥ 3, the proof is by induction. We assume
that, the Jensen’s inequality holds when N = k − 1, i.e.

f(

k−1∑
i=1

λixi) ≤
k−1∑
i=1

λif(xi)

11

We then prove that, the Jensen’s inequality still holds for N = k. In particular,

f(

k∑
i=1

λixi) = f(

k−1∑
i=1

λixi + λkxk)

= f((1− λk)

k−1∑
i=1

λi
1− λk

xi + λkxk)

≤ (1− λk)f(

k−1∑
i=1

λi
1− λk

xi) + λkf(xk)

≤ (1− λk)

k−1∑
i=1

λi
1− λk

f(xi) + λkf(xk)

=

k−1∑
i=1

λif(xi) + λkf(xk)

=

k∑
i=1

λif(xi)

The inequality can be generalized to infinite sums, integrals, and expected
values. For example, assuming X is a random variable, we have

f [E(X)] ≤ E[f(X)] (25)

The equality holds if X is a constant.
When f is a concave function, the Jensen’s inequality can be re-written as

f(

N∑
i=1

λixi) ≥
N∑
i=1

λif(xi) (26)

while its probabilistic form becomes

f(E[X]) ≥ E[f(X)] (27)

For example, when f(x) = log x, we have

log(

N∑
i=1

λixi) ≥
N∑
i=1

λi log(xi) (28)

log(E[X]) ≥ E[log(X)] (29)

6.3 EM Algorithm

Let {x(1), x(2), · · · , x(m)} be a set of training data without labels. The log-
likelihood function can be defined by

`(θ) = log

m∏
i=1

p(x(i); θ)

=

m∑
i=1

log
∑
z(i)∈Ω

p(x(i), z(i); θ) (30)

12

where θ denotes the full set of unknown parameters, while z(i) ∈ Ω is so-called
“latent variable” with Ω being the set of its all possible values. In fact, z(i)

is an analogue of label, which we “guess” for each training data. Specifically,
supposing X(i) and Z(i) are the random variables representing the features and
the label of the i-th data sample, p(x(i); θ) = P (X(i) = x(i)) is the marginal
PMF of X(i), while p(x(i), z(i); θ) = P (X(i) = x(i), Z(i) = z(i)) is the joint PMF
of (X(i), Z(i)).

To maximize the above log-likelihood function `(θ), the basic idea of the EM
algorithm is to repeatedly construct a lower-bound on ` (E-step), and then op-
timize the lower-bound (M-step). We assume that the i-th training sample has
its label following a probability distribution Qi. In another word, Qi(z

(i)) rep-
resents the probability that the i-th training sample has its label being z(i) ∈ Ω
(i.e., Qi(z

(i)) = P (Z(i) = z(i))). Qi(z
(i)) should satisfy the following conditions:∑

z(i)∈Ω

Qi(z
(i)) = 1,

Qi(z
(i)) ≥ 0, ∀z(i) ∈ Ω

Also, suppose φ(Z(i)) is a function of random variable Z(i). we then have

E(φ(Z(i))) =
∑
z(i)∈Ω

Q(z(i))φ(z(i)) (31)

We re-write the log-likelihood function as follows

`(θ) =

m∑
i=1

log
∑
z(i)∈Ω

p(x(i), z(i); θ)

=

m∑
i=1

log
∑
z(i)∈Ω

Qi(z
(i))

p(x(i), z(i); θ)

Qi(z(i))

=

m∑
i=1

log
∑
z(i)∈Ω

Qi(z
(i))φ(z(i))

=

m∑
i=1

logEZ(i)∼Qi

[
φ(Z(i))

]
≥

m∑
i=1

EZ(i)∼Qi

[
log φ(Z(i))

]
=

m∑
i=1

∑
z(i)∈Ω

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
(32)

In particular, the first two equality is very trivial, and we have the third one by
assuming φ : Ω→ R is a function of Z(i) such that

φ(z(i)) =
p(x(i), z(i); θ)

Qi(z(i))
.

The forth equality holds according to Eq. (31). By applying Jensen’s inequality
to (concave) log function, we have the inequality in the fifth line. The sixth
equality also comes from Eq. (31)

13

To tighten the lower bound, we should let the equality (in the forth line) hold.
According to Jensen’s inequality, the equality holds if p(x(i), z(i); θ)/Qi(z

(i)) is
a constant. Assume

p(x(i), z(i); θ)

Qi(z(i))
= c (33)

where c is a constant. Since
∑
z(i)∈ΩQi(z

(i)) = 1, we have∑
z(i)∈Ω

p(x(i), z(i); θ) = c
∑
z(i)∈Ω

Qi(z) = c (34)

Then, Qi(z
(i)) can be re-written as

Qi(z
(i)) =

p(x(i), z(i); θ)

c

=
p(x(i), z(i); θ)∑

z(i)∈Ω p(x
(i), z(i); θ)

=
p(x(i), z(i); θ)

p(x(i); θ)

= p(z(i) | x(i); θ)

In another world, Qi(z
(i)) is the conditional probability that the i-th data sample

is labeled by z(i) given it is featured by x(i).
In the EM algorithm, we repeat the following step until convergence

• (E-step) For each i, set

Qi(z
(i)) = p(z(i) | x(i); θ)

• (M-step) set

θ := arg max
θ

∑
i

∑
z(i)∈Ω

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

Theorem 2. The EM algorithm is converged.

Proof. Suppose θ[t] and θ[t+1] be the (input) parameters for the t-th and the
(t+ 1)-th iterations, respectively. The convergence of the EM algorithm can be
proved by showing the EM algorithm monotonically increases the log-likelihood
function, i.e., `(θ[t+1]) ≥ `(θ[t]).

In the t-th iteration, we start with calculating Q
[t]
i (z(i)) according to θ[t]

Q
[t]
i (z(i)) = p(z(i) | x(i); θ[t])

such that Jensen’s inequality holds with equality, and hence

`(θ[t]) =

m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x(i), z(i); θ[t])

Q
[t]
i (z(i))

14

We then calculate θ[t+1]by maximizing the right hand side of the above equation
over θ; therefore, we have

`(θ[t+1]) ≥
m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x(i), z(i); θ[t+1])

Q
[t]
i (z(i))

≥
m∑
i=1

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x(i), z(i); θ[t])

Q
[t]
i (z(i))

= `(θ[t])

The first inequality comes from the fact that

`(θ) ≥
m∑
i=1

∑
z(i)∈Ω

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

holds for ∀θ, and in particular holds for Qi = Q
[t]
i , according to Eq. (32). We

have the inequality in the second line, because θ[t+1] is calculated by

θ[t+1] = arg max
θ

∑
i

∑
z(i)∈Ω

Q
[t]
i (z(i)) log

p(x(i), z(i); θ)

Q
[t]
i (z(i))

6.4 Applying EM Algorithm to Gaussian Discriminant
Analysis

Again, assume {x(i)}i∈[m] is the set of training data without labels and the

latent variable is z(i). For each training data, the probability that it is labeled
by j ∈ [k] is denoted by φj . Obviously, we have

∑k
j=1 φj = 1 and φj ≥ 0 for

∀j ∈ [k]. We also suppose that x | z = j ∼ N (µj ,Σj), i.e., the conditional
probability of observing feature x in a training sample given that its label is j
follows a Gaussian distribution parametrized by µj and Σj

According to the rules of the EM algorithm, we have repeat the following
steps until convergence

• (E-step) For each i, j, set

ω
(i)
j =

p(x(i) | z(i) = j;µ,Σ)p(z(i) = j;φ)∑k
l=1 p(x

(i) | z(i) = l;µ,Σ)p(z(i) = l;φ)

• (M-step) Update the parameters

φj =
1

m

m∑
i=1

ω
(i)
j

µj =

∑m
i=1 ω

(i)
j x(i)∑m

i=1 ω
(i)
j

Σj =

∑m
i=1 ω

(i)
j (x(i) − µj)(x(i) − µj)T∑m

i=1 ω
(i)
j

More details are given in the following.

15

6.4.1 E-Step in Applying EM to GDA

In each iteration, we first calculating Qi(z
(i) = j) for ∀i, j. In particular,

w
(i)
j = Qi(z

(i) = j)

= p(z(i) = j | x(i);φ, µ,Σ)

=
p(x(i) | z(i) = j;µ,Σ)p(z(i) = j;φ)∑k
l=1 p(x

(i) | z(i) = l;µ,Σ)p(z(i) = l;φ)

where

p(x(i) | z(i) = j;µj ,Σj) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x(i) − µj)TΣ−1

j (x(i) − µj)
)

and
p(z(i) = j;φ) = φj

6.4.2 M-Step in Applying EM to GDA

We then maximize

m∑
i=1

∑
z(i)

Qi(z
(i)) log

p(x(i), z(i);φ, µ,Σ)

Qi(z(i))

=

m∑
i=1

k∑
j=1

Qi(z
(i) = j) log

p(x(i) | z(i) = j;µ,Σ)p(z(i) = j;φ)

Qi(z(i) = j)

=

m∑
i=1

k∑
j=1

ω
(i)
j log

1
(2π)n/2|Σj |1/2

exp
(
− 1

2 (x(i) − µj)TΣ−1
j (x(i) − µj)

)
φj

ω
(i)
j

= −
m∑
i=1

k∑
j=1

ω
(i)
j

[
log
(

(2π)
n
2 |Σj |

1
2

)
+

1

2
(x(i) − µj)TΣ−1

j (x(i) − µj)
]

+

m∑
i=1

k∑
j=1

ω
(i)
j log φj −

m∑
i=1

k∑
j=1

ω
(i)
j logω

(i)
j

over µj and Σj
For ∀µj (j ∈ [k]), we first calculate the corresponding partial derivative

5µl

m∑
i=1

k∑
j=1

ω
(i)
j log

1
(2π)n/2|Σj |1/2

exp
(
− 1

2 (x(j) − µj)TΣ−1
j (x(j) − µj)

)
φj

ω
(i)
j

= 5µl

m∑
i=1

k∑
j=1

ω
(i)
j

1

2
(x(i) − µj)TΣ−1

j (x(i) − µj)

=
1

2

m∑
i=1

ω
(i)
l 5µl

(
2µTl Σ−1

l x(i) − µTl Σ−1
l µl

)
=

m∑
i=1

ω
(i)
l

(
Σ−1
l x(i) − Σ−1

l µl

)

16

and then let it be zero. Hence, we have

µl =

∑m
i=1 ω

(i)
l x(i)∑m

i=1 ω
(i)
l

To calculate φ, we have to resolve the following optimization problem

max

m∑
i=1

k∑
j=1

ω
(i)
j log φj

s.t.

k∑
j=1

φj = 1

Using Lagrange multiplier method, we have

φj =
1

m

m∑
i=1

ω
(i)
j

To calculating Σj , we have to minimize

m∑
i=1

k∑
j=1

ω
(i)
j

[
log
(

(2π)
n
2 |Σj |

1
2

)
+

1

2
(x(i) − µj)TΣ−1

j (x(i) − µj)
]

=
n log 2π

2

m∑
i=1

k∑
j=1

ω
(i)
j +

1

2

m∑
i=1

k∑
j=1

ω
(i)
j log |Σj |

+
1

2

m∑
i=1

k∑
j=1

ω
(i)
j (x(i) − µj)TΣ−1

j (x(i) − µj)

Letting its gradient with respect to Σj be zeros, we have

Σj =

∑m
i=1 ω

(i)
j (x(i) − µj)(x(i) − µj)T∑m

i=1 ω
(i)
j

by applying

∇Xtr(AX−1B) = −(X−1BAX−1)T

∇A|A| = |A|(A−1)T

6.5 Applying EM Algorithm to Naive Bayes

Let y(i) be the latent variable. For the i-th training sample, we assume δ(y | i)
denotes conditional the probability of being labeled by y given feature vector
x(i). Then, in EM algorithm, we repeat the following steps until convergence

• (E-step) For each i = 1, · · · ,m and y = 1, · · · , k set

δ(y | i) = p(y | x(i)) =
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y′=1 p(y
′)
∏n
j=1 pj(x

(i)
j | y′)

17

• (M-step) Update the parameters

p(y) =
1

m

m∑
i=1

δ(y | i) (35)

pj(x | y) =
δ(y | i)∑m
i=1 δ(y | i)

(36)

We introduce the details as follows. We first calculate δ(y | i) = Qi(y) for
∀i ∈ [m], y ∈ [k] as

δ(y | i) = p(y | x(i))

=
p(x(i) | y)p(y)

p(x(i))

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y′=1 p(x
(i), y′)

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y′=1 p(x
(i) | y′)p(y′)

=
p(y)

∏n
j=1 pj(x

(i)
j | y)∑k

y′=1 p(y
′)
∏n
j=1 pj(x

(i)
j | y′)

Then, we maximize

m∑
i=1

k∑
y=1

δ(y | i) log
p(x(i), z(i) = y)

δ(y | i)

=

m∑
i=1

k∑
y=1

δ(y | i) log
p(x(i) | z(i) = y)p(z(i) = y)

δ(y | i)

=

m∑
i=1

k∑
y=1

δ(y | i) log
p(y)

∏n
j=1 pj(x

(i)
j | y)

δ(y | i)

=

m∑
i=1

k∑
y=1

δ(y | i)

log p(y) +

n∑
j=1

log pj(x
(i)
j | y)− log δ(y | i)


=

m∑
i=1

k∑
y=1

δ(y | i) log p(y) +

m∑
i=1

k∑
y=1

n∑
j=1

δ(y | i) log pj(x
(i)
j | y)

−
m∑
i=1

k∑
y=1

δ(y | i) log δ(y | i)

18

over p(y) and pj(x | y). The maximization problem can be formulated as follows:

max

m∑
i=1

k∑
y=1

δ(y | i) log p(y) +

k∑
y=1

n∑
j=1

∑
x∈{0,1}

 ∑
i:x

(i)
j =x

δ(y | i)

 log pj(x | y)

s.t.

k∑
y=1

p(y) = 1

∑
x∈{0,1}

pj(x | y) = 1, ∀y = 1, · · · , k, ∀j = 1, · · · , n

p(y) ≥ 0, ∀y = 1, · · · , k
pj(x | y) ≥ 0, ∀j = 1, · · · , n, ∀x ∈ {0, 1}, ∀y = 1, · · · , k

By applying Lagrange multiplier method, we have the optimal solution shown
in (35) and (36).

19

