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Supervised Learning

Regression: Predict a continuous value

Classification: Predict a discrete value, the class

Living area (feet2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
...

...
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Supervised Learning (Contd.)

Features: input variables, x ;

Target: output variable, y ;

Training example: (x (i), y (i)), i = 1, 2, 3, ...,m

Hypothesis: h : X → Y.

Training 
    set

 house.)
(living area of

Learning 
algorithm

h predicted yx
(predicted price)
of house)
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Linear Regression

Linear hypothesis: h(x) = θ1x + θ0.

θi (i = 1, 2 for 2D cases): Parameters to estimate.

How to choose θi ’s?
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Linear Regression (Contd.)

Input: Training set (x (i), y (i)) ∈ R2 (i = 1, ...,m)

Goal: Model the relationship between x and y such that we can predict
the corresponding target according to a given new feature.
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Linear Regression (Contd.)

The relationship between x and y is modeled as a linear function.

The linear function in the 2D plane is a straight line.

Hypothesis: hθ(x) = θ0 + θ1x (where θ0 and θ1 are parameters)
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Linear Regression (Contd.)

Given data x ∈ Rn, we then have θ ∈ Rn+1

Thus hθ(x) =
∑n

i=0 θixi = θT x , where x0 = 1

What is the best choice of θ ?

min
θ

J(θ) =
1

2

m∑
i=1

(hθ(x (i))− y (i))2

where J(θ) is so-called a cost function
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Linear Regression (Contd.)

min
θ

J(θ) =
1

2

m∑
i=1

(hθ(x (i))− y (i))2
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Gradient

Definition

Directional Derivative: The directional derivative of function f : Rn → R
in the direction u ∈ Rn is

∇uf (x) = lim
h→0

f (x + hu)− f (x)

h

∇uf (x) represents the rate at which f is increased in direction u

When u is the i-th standard unit vector ei ,

∇uf (x) = f ′i (x)

where f ′i (x) = ∂f (x)
∂xi

is the partial derivative of f (x) w.r.t. xi
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Gradient (Contd.)

Theorem

For any n-dimensional vector u, the directional derivative of f in the direction
of u can be represented as

∇uf (x) =
n∑

i=1

f ′i (x) · ui
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Gradient (Contd.)

Proof.

Letting g(h) = f (x + hu), we have

g ′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f (x + hu)− g(0)

h
= ∇uf (x) (1)

On the other hand, by the chain rule,

g ′(h) =
n∑

i=1

f ′i (x)
d

dh
(xi + hui ) =

n∑
i=1

f ′i (x)ui (2)

Let h = 0, then g ′(0) =
∑n

i=1 f
′
i (x)ui , by substituting which into (1), we

complete the proof.
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Gradient (Contd.)

Definition

Gradient: The gradient of f is a vector function ∇f : Rn → Rn defined by

∇f (x) =
n∑

i=1

∂f

∂xi
ei

where ei is the i-th standard unit vector. In another simple form,

∇f (x) =

[
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

]T
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Gradient (Contd.)

∇uf (x) = ∇f (x) ·u = ‖∇f (x)‖‖u‖ cos a where a is the angle between
∇f (x) and u

Without loss of generality, assume u is a unit vector,

∇uf (x) = ‖∇f (x)‖ cos a

When u = ∇f (x) such that a = 0 (and thus cos a = 1, we have the
maximum directional derivative of f , which implies that ∇f (x) is the
direction of steepest ascent of f .
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Gradient Descent (GD) Algorithm

If the multi-variable function J(θ) is differentiable in a neighborhood of
a point θ, then J(θ) decreases fastest if one goes from θ in the direction
of the negative gradient of J at θ

Find a local minimum of a differentiable function using gradient descent

Algorithm 1 Gradient Descent

1: Given a starting point θ ∈ dom J
2: repeat
3: Calculate gradient ∇J(θ);
4: Update θ ← θ − α∇J(θ)
5: until convergence criterion is satisfied

θ is usually initialized randomly
α is so-called learning rate
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GD Algorithm (Contd.)

Stopping criterion (i.e., conditions to convergence)

the gradient has its magnitude less than or equal to a predefined thresh-
old (say ε), i.e.

‖∇f (x)‖2 ≤ ε

where ‖ · ‖2 is `2 norm, such that the values of the objective function
differ very slightly in successive iterations
Set a fixed value for the maximum number of iterations, such that the
algorithm is terminated after the number of the iterations exceeds the
threshold.
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GD Algorithm (Contd.)

In more details, we update each component of θ according to the fol-
lowing rule

θj ← θj − α
∂J(θ)

∂θj
, ∀j = 0, 1, · · · , n

Calculating the gradient for linear regression

∂J(θ)

∂θj
=

∂

∂θj

1

2

m∑
i=1

(θT x (i) − y (i))2

=
∂

∂θj

1

2

m∑
i=1

(
n∑

j=0

θjx
(i)
j − y (i))2

=
m∑
i=1

(θT x (i) − y (i))x
(i)
j
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GD Algorithm (Contd.)

An illustration of gradient descent algorithm

The objective function is decreased fastest along the gradient
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GD Algorithm (Contd.)

Another commonly used form

min
θ

J(θ) =
1

2m

m∑
i=1

(hθ(x (i))− y (i))2

What’s the difference?

m is introduced to scale the objective function to deal with differently
sized training set.

Gradient ascent algorithm

Maximize the differentiable function J(θ)
The gradient represents the direction along which J increases fastest
Therefore, we have

θj ← θj + α
∂J(θ)

∂θj
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Convergence under Different Step Sizes

Iterations
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Stochastic Gradient Descent (SGD)

What if the training set is huge?

In the above batch gradient descent algorithm, we have to run through
the entire training set in each iteration
A considerable computation cost is induced!

Stochastic gradient descent (SGD), also known as incremental gradient
descent, is a stochastic approximation of the gradient descent optimiza-
tion method

In each iteration, the parameters are updated according to the gradient
of the error with respect to one training sample only
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Stochastic Gradient Descent (Contd.)

Algorithm 2 Stochastic Gradient Descent for Linear Regression

1: Given a starting point θ ∈ dom J
2: repeat
3: Randomly shuffle the training data;
4: for i = 1, 2, · · · ,m do
5: θ ← θ − α∇J(θ; x (i), y (i))
6: end for
7: until convergence criterion is satisfied
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More About SGD

The objective does not always decrease for each iteration

Usually, SGD has θ approaching the minimum much faster than batch
GD

SGD may never converge to the minimum, and oscillating may happen

A variants: Mini-batch, say pick up a small group of samples and do
average, which may accelerate and smoothen the convergence

Feng Li (SDU) Linear Regression September 13, 2023 23 / 31



Matrix Derivatives 1

A function f : Rm×n → R
The derivative of f with respect to A is defined as

Of (A) =


∂f
∂A11

· · · ∂f
∂An

...
. . .

...
∂f
∂Am1

· · · ∂f
∂Amn


For an n × n matrix, its trace is defined as trA =

∑n
i=1 Aii

trABCD = trDABC = trCDAB = trBCDA
trA = trAT , tr(A + B) = trA + trB, traA = atrA
5AtrAB = BT , 5AT f (A) = (5Af (A))T

5AtrABA
TC = CAB + CTABT , 5A|A| = |A|(A−1)T

Funky trace derivative OAT trABATC = BTATCT + BATC

1Details can be found in “Properties of the Trace and Matrix Derivatives” by John
Duchi

Feng Li (SDU) Linear Regression September 13, 2023 24 / 31

https://funglee.github.io/ml/ref/matrix_prop.pdf


Revisiting Least Square

Assume

X =

 (x (1))T

...

(x (m))T

 Y =

y
(1)

...

y (m)


Therefore, we have

Xθ − Y =

(x (1))T θ
...

x (m))T θ

−
y

(1)

...

y (m)

 =

 hθ(x (1))− y (1)

...

hθ(x (m))− y (m)


J(θ) = 1

2

∑m
i=1(hθ(x (i))− y (i))2 = 1

2(Xθ − Y )T (Xθ − Y )
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Revisiting Least Square (Contd.)

Minimize J(θ) = 1
2(Y − Xθ)T (Y − Xθ)

Calculate its derivatives with respect to θ

5θJ(θ) = 5θ
1

2
(Y − Xθ)T (Y − Xθ)

=
1

2
Oθ(Y T − θTXT )(Y − Xθ)

=
1

2
Oθtr(Y

TY − Y TXθ − θTXTY + θTXTXθ)

=
1

2
Oθtr(θ

TXTXθ)− XTY

=
1

2
(XTXθ + XTXθ)− XTY

= XTXθ − XTY

Tip: Funky trace derivative OAT trABATC = BTATCT + BATC
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Revisiting Least Square (Contd.)

Theorem:
The matrix ATA is invertible if and only if the columns of A are linearly
independent. In this case, there exists only one least-squares solution

θ = (XTX )−1XTY

Prove the above theorem in Problem Set 1.
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Probabilistic Interpretation

The target variables and the inputs are related

y = θT x + ε

ε’s denote the errors and are independently and identically distributed
(i.i.d.) according to a Gaussian distribution N (0, σ2)

The density of ε(i) is given by

f (ε) =
1√
2πσ

exp

(
− ε2

2σ2

)
The conditional probability density function of y

y | x ; θ ∼ N (θT x , σ2)
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Probabilistic Interpretation (Contd.)

The training data {x (i), y (i)}i=1,··· ,m are sampled identically and inde-
pendently

p(y = y (i) | x = x (i); θ) =
1√
2πσ

exp

(
−(y (i) − θT x (i))2

2σ2

)

Likelihood functoin

L(θ) =
∏
i

p(y (i) | x (i); θ)

=
∏
i

1√
2πσ

exp

(
−(y (i) − θT x (i))2

2σ2

)
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Probabilistic Interpretation (Contd.)

Maximizing the likelihood L(θ)
Since L(θ) is complicated, we maximize an increasing function of L(θ)
instead

`(θ) = log L(θ)

= log
m∏
i

1√
2πσ

exp

(
−(y (i) − θT x (i))2

2σ2

)

=
m∑
i

log
1√
2πσ

exp

(
−(y (i) − θT x (i))2

2σ2

)

= m log
1√
2πσ

− 1

2σ2

∑
i

(y (i) − θT x (i))2

Apparently, maximizing L(θ) (thus `(θ)) is equivalent to minimizing

1

2

m∑
i

(y (i) − θT x (i))2
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Thanks!

Q & A
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