Lecture 2: Linear Regression

Feng Li

Shandong University
fli@sdu.edu.cn
September 13, 2023

Lecture 2: Linear Regression

(1) Supervised Learning: Regression and Classification
(2) Linear Regression
(3) Gradient Descent Algorithm

4 Stochastic Gradient Descent
(5) Revisiting Least Square

6 A Probabilistic Interpretation to Linear Regression

Supervised Learning

- Regression: Predict a continuous value
- Classification: Predict a discrete value, the class

Living area $\left(\right.$ feet $\left.^{2}\right)$	Price $(1000 \$$ s $)$
2104	400
1600	330
2400	369
1416	232
3000	540
\vdots	\vdots

Supervised Learning (Contd.)

- Features: input variables, x;
- Target: output variable, y;
- Training example: $\left(x^{(i)}, y^{(i)}\right), i=1,2,3, \ldots, m$
- Hypothesis: $h: \mathcal{X} \rightarrow \mathcal{Y}$.

Linear Regression

- Linear hypothesis: $h(x)=\theta_{1} x+\theta_{0}$.
- θ_{i} ($i=1,2$ for 2D cases): Parameters to estimate.
- How to choose θ_{i} 's?

Linear Regression (Contd.)

- Input: Training set $\left(x^{(i)}, y^{(i)}\right) \in \mathbb{R}^{2}(i=1, \ldots, m)$
- Goal: Model the relationship between x and y such that we can predict the corresponding target according to a given new feature.

Linear Regression (Contd.)

- The relationship between x and y is modeled as a linear function.
- The linear function in the 2D plane is a straight line.
- Hypothesis: $h_{\theta}(x)=\theta_{0}+\theta_{1} x$ (where θ_{0} and θ_{1} are parameters)

Linear Regression (Contd.)

- Given data $x \in \mathbb{R}^{n}$, we then have $\theta \in \mathbb{R}^{n+1}$
- Thus $h_{\theta}(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x$, where $x_{0}=1$
- What is the best choice of θ ?

$$
\min _{\theta} J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

where $J(\theta)$ is so-called a cost function

Linear Regression (Contd.)

$$
\min _{\theta} J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Gradient

Definition

Directional Derivative: The directional derivative of function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the direction $u \in \mathbb{R}^{n}$ is

$$
\nabla_{u} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h u)-f(x)}{h}
$$

- $\nabla_{u} f(x)$ represents the rate at which f is increased in direction u
- When u is the i-th standard unit vector e_{i},

$$
\nabla_{u} f(x)=f_{i}^{\prime}(x)
$$

where $f_{i}^{\prime}(x)=\frac{\partial f(x)}{\partial x_{i}}$ is the partial derivative of $f(x)$ w.r.t. x_{i}

Gradient (Contd.)

Theorem

For any n-dimensional vector u, the directional derivative off in the direction of u can be represented as

$$
\nabla_{u} f(x)=\sum_{i=1}^{n} f_{i}^{\prime}(x) \cdot u_{i}
$$

Gradient (Contd.)

Proof.

Letting $g(h)=f(x+h u)$, we have

$$
\begin{equation*}
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h u)-g(0)}{h}=\nabla_{u} f(x) \tag{1}
\end{equation*}
$$

On the other hand, by the chain rule,

$$
\begin{equation*}
g^{\prime}(h)=\sum_{i=1}^{n} f_{i}^{\prime}(x) \frac{d}{d h}\left(x_{i}+h u_{i}\right)=\sum_{i=1}^{n} f_{i}^{\prime}(x) u_{i} \tag{2}
\end{equation*}
$$

Let $h=0$, then $g^{\prime}(0)=\sum_{i=1}^{n} f_{i}^{\prime}(x) u_{i}$, by substituting which into (1), we complete the proof.

Gradient (Contd.)

Definition

Gradient: The gradient of f is a vector function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\nabla f(x)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} e_{i}
$$

where e_{i} is the i-th standard unit vector. In another simple form,

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right]^{T}
$$

Gradient (Contd.)

- $\nabla_{u} f(x)=\nabla f(x) \cdot u=\|\nabla f(x)\|\|u\| \cos a$ where a is the angle between $\nabla f(x)$ and u
- Without loss of generality, assume u is a unit vector,

$$
\nabla_{u} f(x)=\|\nabla f(x)\| \cos a
$$

- When $u=\nabla f(x)$ such that $a=0$ (and thus $\cos a=1$, we have the maximum directional derivative of f, which implies that $\nabla f(x)$ is the direction of steepest ascent of f.

Gradient Descent (GD) Algorithm

- If the multi-variable function $J(\theta)$ is differentiable in a neighborhood of a point θ, then $J(\theta)$ decreases fastest if one goes from θ in the direction of the negative gradient of J at θ
- Find a local minimum of a differentiable function using gradient descent

Algorithm 1 Gradient Descent

1: Given a starting point $\theta \in$ dom J
2: repeat
3: Calculate gradient $\nabla J(\theta)$;
4: \quad Update $\theta \leftarrow \theta-\alpha \nabla J(\theta)$
5: until convergence criterion is satisfied

- θ is usually initialized randomly
- α is so-called learning rate

GD Algorithm (Contd.)

- Stopping criterion (i.e., conditions to convergence)
- the gradient has its magnitude less than or equal to a predefined threshold (say ε), i.e.

$$
\|\nabla f(x)\|_{2} \leq \varepsilon
$$

where $\|\cdot\|_{2}$ is ℓ_{2} norm, such that the values of the objective function differ very slightly in successive iterations

- Set a fixed value for the maximum number of iterations, such that the algorithm is terminated after the number of the iterations exceeds the threshold.

GD Algorithm (Contd.)

- In more details, we update each component of θ according to the following rule

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial J(\theta)}{\partial \theta_{j}}, \quad \forall j=0,1, \cdots, n
$$

- Calculating the gradient for linear regression

$$
\begin{aligned}
\frac{\partial J(\theta)}{\partial \theta_{j}} & =\frac{\partial}{\partial \theta_{j}} \frac{1}{2} \sum_{i=1}^{m}\left(\theta^{T} x^{(i)}-y^{(i)}\right)^{2} \\
& =\frac{\partial}{\partial \theta_{j}} \frac{1}{2} \sum_{i=1}^{m}\left(\sum_{j=0}^{n} \theta_{j} x_{j}^{(i)}-y^{(i)}\right)^{2} \\
& =\sum_{i=1}^{m}\left(\theta^{T} x^{(i)}-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

GD Algorithm (Contd.)

- An illustration of gradient descent algorithm
- The objective function is decreased fastest along the gradient

GD Algorithm (Contd.)

- Another commonly used form

$$
\min _{\theta} J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

- What's the difference?
- m is introduced to scale the objective function to deal with differently sized training set.
- Gradient ascent algorithm
- Maximize the differentiable function $J(\theta)$
- The gradient represents the direction along which J increases fastest
- Therefore, we have

$$
\theta_{j} \leftarrow \theta_{j}+\alpha \frac{\partial J(\theta)}{\partial \theta_{j}}
$$

Convergence under Different Step Sizes

Stochastic Gradient Descent (SGD)

- What if the training set is huge?
- In the above batch gradient descent algorithm, we have to run through the entire training set in each iteration
- A considerable computation cost is induced!
- Stochastic gradient descent (SGD), also known as incremental gradient descent, is a stochastic approximation of the gradient descent optimization method
- In each iteration, the parameters are updated according to the gradient of the error with respect to one training sample only

Stochastic Gradient Descent (Contd.)

Algorithm 2 Stochastic Gradient Descent for Linear Regression
1: Given a starting point $\theta \in$ dom J
: repeat
3: Randomly shuffle the training data;
4: \quad for $i=1,2, \cdots, m$ do
5: $\quad \theta \leftarrow \theta-\alpha \nabla J\left(\theta ; x^{(i)}, y^{(i)}\right)$
6: end for
7: until convergence criterion is satisfied

More About SGD

- The objective does not always decrease for each iteration
- Usually, SGD has θ approaching the minimum much faster than batch GD
- SGD may never converge to the minimum, and oscillating may happen
- A variants: Mini-batch, say pick up a small group of samples and do average, which may accelerate and smoothen the convergence

Matrix Derivatives ${ }^{1}$

- A function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$
- The derivative of f with respect to A is defined as

$$
\nabla f(A)=\left[\begin{array}{ccc}
\frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial A_{m 1}} & \cdots & \frac{\partial f}{\partial A_{m n}}
\end{array}\right]
$$

- For an $n \times n$ matrix, its trace is defined as $\operatorname{tr} A=\sum_{i=1}^{n} A_{i i}$
- $\operatorname{tr} A B C D=\operatorname{tr} D A B C=\operatorname{tr} C D A B=\operatorname{tr} B C D A$
- $\operatorname{tr} A=\operatorname{tr} A^{T}, \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B, \operatorname{tra} A=\operatorname{atr} A$
- $\nabla A^{\operatorname{tr}} A B=B^{T}, \nabla_{A^{T}} f(A)=\left(\nabla A^{T} f(A)\right)^{T}$
- $\nabla A \operatorname{tr} A B A^{T} C=C A B+C^{T} A B^{T}, \nabla A|A|=|A|\left(A^{-1}\right)^{T}$
- Funky trace derivative $\nabla_{A^{T}} \operatorname{tr} A B A^{T} C=B^{T} A^{T} C^{T}+B A^{T} C$

[^0]
Revisiting Least Square

- Assume

$$
X=\left[\begin{array}{c}
\left(x^{(1)}\right)^{T} \\
\vdots \\
\left(x^{(m)}\right)^{T}
\end{array}\right] \quad Y=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right]
$$

- Therefore, we have

$$
X \theta-Y=\left[\begin{array}{c}
\left(x^{(1)}\right)^{T} \theta \\
\vdots \\
\left.x^{(m)}\right)^{T} \theta
\end{array}\right]-\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right]=\left[\begin{array}{c}
h_{\theta}\left(x^{(1)}\right)-y^{(1)} \\
\vdots \\
h_{\theta}\left(x^{(m)}\right)-y^{(m)}
\end{array}\right]
$$

- $J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}=\frac{1}{2}(X \theta-Y)^{T}(X \theta-Y)$

Revisiting Least Square (Contd.)

- Minimize $J(\theta)=\frac{1}{2}(Y-X \theta)^{T}(Y-X \theta)$
- Calculate its derivatives with respect to θ

$$
\begin{aligned}
\nabla_{\theta} J(\theta) & =\nabla_{\theta} \frac{1}{2}(Y-X \theta)^{T}(Y-X \theta) \\
& =\frac{1}{2} \nabla_{\theta}\left(Y^{T}-\theta^{T} X^{T}\right)(Y-X \theta) \\
& =\frac{1}{2} \nabla_{\theta} \operatorname{tr}\left(Y^{T} Y-Y^{T} X \theta-\theta^{T} X^{T} Y+\theta^{T} X^{T} X \theta\right) \\
& =\frac{1}{2} \nabla_{\theta} \operatorname{tr}\left(\theta^{T} X^{T} X \theta\right)-X^{T} Y \\
& =\frac{1}{2}\left(X^{T} X \theta+X^{T} X \theta\right)-X^{T} Y \\
& =X^{T} X \theta-X^{T} Y
\end{aligned}
$$

- Tip: Funky trace derivative $\nabla_{A^{T}} \operatorname{tr} A B A^{T} C=B^{T} A^{T} C^{T}+B A^{T} C$

Revisiting Least Square (Contd.)

- Theorem: The matrix $A^{T} A$ is invertible if and only if the columns of A are linearly independent. In this case, there exists only one least-squares solution

$$
\theta=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

- Prove the above theorem in Problem Set 1.

Probabilistic Interpretation

- The target variables and the inputs are related

$$
y=\theta^{T} x+\epsilon
$$

- ϵ 's denote the errors and are independently and identically distributed (i.i.d.) according to a Gaussian distribution $\mathcal{N}\left(0, \sigma^{2}\right)$
- The density of $\epsilon^{(i)}$ is given by

$$
f(\epsilon)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)
$$

- The conditional probability density function of y

$$
y \mid x ; \theta \sim \mathcal{N}\left(\theta^{T} x, \sigma^{2}\right)
$$

Probabilistic Interpretation (Contd.)

- The training data $\left\{x^{(i)}, y^{(i)}\right\}_{i=1, \cdots, m}$ are sampled identically and independently

$$
p\left(y=y^{(i)} \mid x=x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
$$

- Likelihood functoin

$$
\begin{aligned}
L(\theta) & =\prod_{i} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \\
& =\prod_{i} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Probabilistic Interpretation (Contd.)

- Maximizing the likelihood $L(\theta)$
- Since $L(\theta)$ is complicated, we maximize an increasing function of $L(\theta)$ instead

$$
\begin{aligned}
\ell(\theta) & =\log L(\theta) \\
& =\log \prod_{i}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \\
& =\sum_{i}^{m} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \\
& =m \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}
\end{aligned}
$$

- Apparently, maximizing $L(\theta)$ (thus $\ell(\theta)$) is equivalent to minimizing

$$
\frac{1}{2} \sum_{i}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}
$$

Thanks!

Q \& A

[^0]: ${ }^{1}$ Details can be found in "Properties of the Trace and Matrix Derivatives" by John Duchi

