
Lecture Notes on Linear Regression

Feng Li
fli@sdu.edu.cn

Shandong University, China

1 Linear Regression Problem

In regression problem, we aim at predicting a continuous target value given an
input feature vector. We assume a n-dimensional feature vector is denoted by
x 2 Rn, while y 2 R is the output variable. In linear regression models, the
hypothesis function is defined by

h✓(x) = ✓nxn + ✓n�1xn�1 + · · ·+ ✓1x1 + ✓0

Geometrically, when n = 1, h✓(x) is actually a line in a 2D plane, while h✓(x)
represents a plane in a 3D space when n = 2. Generally, when n � 3, h✓(x)
defines a so-called “hyperplane” in a higher dimensional space. Suppose

✓ =

2

666664

✓n
✓n�1
...
✓1
✓0

3

777775
, and x =

2

666664

xn

xn�1
...
x1

1

3

777775

the hypothesis function h✓(x) can be re-written as

h✓(x) = ✓Tx (1)

where ✓ 2 Rn+1 is a parameter vector.
It is apparent that the hypothesis function is parameterized by ✓. Since

our goal is to make predictions according to the hypothesis function given a
new test data, we need to find the optimal value of ✓ such that the resulting
prediction is as accurate as possible. Such a procedure is so-called training.
The training procedure is performed based on a given set of m training data
{x(i), y(i)}i=1,··· ,m. In particular, we are supposed to find a hypothesis function
(parameterized by ✓) which fits the training data as closely as possible. To
measure the error between h✓ and the training data, we define a cost function
(also called error function) J(✓) : Rn+1 ! R as follows

J(✓) =
1

2

mX

i=1

⇣
h✓(x

(i))� y(i)
⌘2

Our linear regression problem can be formulated as

min
✓

J(✓) =
1

2

mX

i=1

⇣
✓Tx(i) � y(i)

⌘2

1

Figure 1: 3D linear regression.

Specifically, we aim at minimizing J(✓) over ✓. We give an illustration in Fig. 1
to explain linear regression in 3D space (i.e., n = 2). In the 3D space, the
hypothesis function is represented by a hyperplane. The red points denote the
training data, and the distance from the (read) training data to the hyperplane
is denoted by |✓Tx(i) � y(i)|.

2 Gradient Descent

Gradient Descent (GD) method is a first-order iterative optimization algorithm
for finding the minimum of a function. If the multi-variable function J(✓) is
di↵erentiable in a neighborhood of a point ✓, then J(✓) decreases fastest if one
goes from ✓ in the direction of the negative gradient of J at ✓. Let

rJ(✓) = [
@J

@✓0
,
@J

@✓1
, · · · , @J

@✓n
]T (2)

denote the gradient of J(✓). In each iteration, we update ✓ according to the
following rule:

✓ ✓ � ↵rJ(✓) (3)

where ↵ is a step size. In more details,

✓j ✓j � ↵
@J(✓)

@✓j
(4)

The update is terminated when convergence is achieved. In our linear regression
model, the gradient can be calculated as

@J(✓)

@✓j
=

@

@✓j

1

2

mX

i=1

(✓Tx(i) � y(i))2 =
mX

i=1

(✓Tx(i) � y(i))x(i)
j (5)

We summarize the GD method in Algorithm 1. The algorithm usually starts

2

Algorithm 1: Gradient Descent

Given a starting point ✓ 2 dom J
repeat
1. Calculate gradient rJ(✓);
2. Update ✓ ✓ � ↵rJ(✓)

until convergence criterion is satisfied

Figure 2: The convergence of GD algorithm.

with a randomly initialized ✓. In each iteration, we update ✓ such that the objec-
tive function is decreased monotonically. The algorithm is said to be converged
when the gradient has its magnitude less than or equal to a predefined threshold
(say "), i.e.

krf(x)k2 "

where k · k2 is `2 norm, such that the values of the objective function di↵er very
slightly in successive iterations. Another convergence criterion is to set a fixed
value for the maximum number of iterations, and the algorithm is terminated
after the number of the iterations exceeds the threshold. We illustrate how
the algorithm converges iteratively in Fig. 2. The colored contours represent
the objective function, and GD algorithm converges into the minimum step-by-
step.

The choice of the step size ↵ actually has a very important influence on
the convergence of the GD algorithm. We illustrate the convergence processes
under di↵erent step sizes in Fig. 3.

3 Stochastic Gradient Descent

According to Eq. 5, it is observed that we have to visit all training data in
each iteration. Therefore, the induced cost is considerable especially when the
training data are of big size.

3

Iterations
0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n
J

0

0.1

0.2

0.3

0.4

0.5

0.6
� = 0.06
� = 0.07
� = 0.071

Figure 3: The convergence of GD algorithm under di↵erent step sizes.

Stochastic Gradient Descent (SGD), also known as incremental gradient
descent, is a stochastic approximation of the gradient descent optimization
method. In each iteration, the parameters are updated according to the gra-
dient of the error (i.e., the cost function) with respect to one training sample
only. Hence, it entails very limited cost.

We summarize the SGD method in Algorithm 2. In each iteration, we first
randomly shu✏e the training data, and then choose only one training example to
calculate the gradient (i.e., rJ(✓;x(i), y(i))) to update ✓. In our linear regression
model, rJ(✓;x(i), y(i)) is defined as

rJ(✓;x(i), y(i)) = (✓Tx(i) � y(i))x(i) (6)

and the update rule is

✓j ✓j � ↵(✓Tx(i) � y(i))x(i)
j (7)

Algorithm 2: Stochastic Gradient Descent for Linear Regression

1: Given a starting point ✓ 2 dom J
2: repeat
3: Randomly shu✏e the training data;
4: for i = 1, 2, · · · ,m do
5: ✓ ✓ � ↵rJ(✓;x(i), y(i))
6: end for
7: until convergence criterion is satisfied

Compared with GD where the objective cost function is decreased monoton-
ically in each step, SGD does not have such a guarantee. In fact, SGD entails

4

more steps to converge, but each step is cheaper. One variants of SGD is so-
called mini-batch SGD, where we pick up a small group of training data and do
average to accelerate and smoothen the convergence. For example, by randomly
choosing k training data, we can calculate the average the gradient

1

k

kX

i=1

rJ(✓;x(i), y(i)) (8)

4 A Closed-Form Solution to Linear Regression

We first look at the vector form of the linear regression model. Assume

X =

2

64
(x(1))T

...
(x(m))T

3

75 Y =

2

64
y(1)

...
y(m)

3

75 (9)

Therefore, we have

X✓ � Y =

2

64
(x(1))T ✓

...
x(m))T ✓

3

75�

2

64
y(1)

...
y(m)

3

75 =

2

64
h✓(x(1))� y(1)

...
h✓(x(m))� y(m)

3

75

Then, the cost function J(✓) can be redefined as

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i)) =

1

2
(X✓ � Y)T (X✓ � Y) (10)

To minimize the cost function, we calculate its derivative and let it be zero

r✓J(✓) = r✓
1

2
(Y �X✓)T (Y �X✓)

=
1

2
r✓(Y

T � ✓TXT)(Y �X✓)

=
1

2
r✓tr(Y

TY � Y TX✓ � ✓TXTY + ✓TXTX✓)

=
1

2
r✓tr(✓

TXTX✓)�XTY

=
1

2
(XTX✓ +XTX✓)�XTY

= XTX✓ �XTY

Since XTX✓�XTY = 0, we have ✓ = (XTX)�1XTY . Note that the inverse of
XTX does not always exist. In fact, the matrix XTX is invertible if and only
if the columns of X are linearly independent.

5 A Probabilistic Interpretation

An interesting question is why the least square form of the linear regression
model is reasonable. We hereby give a probabilistic interpretation. We suppose
a target value y are sampled from a “line” ✓Tx with noise ". Therefore, we have

y = x+ "

5

We assume " denote the noise and is independently and identically distributed
(i.i.d.) according to a Gaussian distribution N (0,�2). The density of "(i) is
given by

f(✏) =
1p
2⇡�

exp

✓
� ✏2

2�2

◆

Hence, the conditional probability density function of y given x is defined by

p(y | x; ✓) = 1p
2⇡�

exp

✓
� (y � ✓Tx)2

2�2

◆

It is shown that the distribution of y given x is parameterized by ✓, i.e.,

y | x; ✓ ⇠ N (✓Tx,�2)

Considering the training data {(x(i), y(i))}i=1,··· ,m are sampled indepen-
dently, we define the corresponding likelihood function

L(✓) =
Y

i

p(y(i) | x(i); ✓) =
Y

i

1p
2⇡�

exp

✓
� (y(i) � ✓Tx(i))2

2�2

◆

To calculating the optimal ✓ such that the resulting linear regression model
fits the given training data best, we need to maximize the likelihood L(✓). To
simplify the computation, we use the log-likelihood function instead, i.e.,

`(✓) = logL(✓)

= log
mY

i

1p
2⇡�

exp

✓
� (y(i) � ✓Tx(i))2

2�2

◆

=
mX

i

log
1p
2⇡�

exp

✓
� (y(i) � ✓Tx(i))2

2�2

◆

= m log
1p
2⇡�

� 1

2�2

X

i

(y(i) � ✓Tx(i))2

Apparently, maximizing L(✓) is equivalent to minimizing

1

2

X

i

(y(i) � ✓Tx(i))2

Now, we conclude that, the rationality of adopting the least square in the linear
model comes from the fact that the training data are sampled with Gaussian
noise.

6

