
Machine Learning
Lecture 10: Neural Networks and Deep Learning

Feng Li

fli@sdu.edu.cn

https://funglee.github.io

School of Computer Science and Technology
Shandong University

Fall 2018

fli@sdu.edu.cn
https://funglee.github.io


Deep Feedforward Networks

• Also called feedforward neural networks or multilayer perceptrons (MLPs)

• The goal is to approximate some function f∗

• E.g., for a classifier, y = f∗(x) maps an input x to a category y

• A feedforward network defines a mapping y = f(x; θ) and learns the value
of the parameters θ that result in the best function approximations

• f(x) is usually a highly non-linear function

• Feedforward networks are of extreme importance to machine learning
practioners
• The conventional neural networks (CNN) used for object recognition from

photos are a specialized kind of feedforward network
• It can be extended to recurrent neural networks (RNN) by involving

feedback connections, which power many natural language applications

2 / 19



Neuron

3 / 19



Neuron (Contd.)

• Neuron activated when the correlation between the input and a pattern θ
exceeds some threshold b

• y = g(θTx− b)
• g(·) is called activation function

• Sigmoid: g(z) = 1/(1 + e−z)
• ReLU: g(z) = max(z, 0)
• Tanh: g(z) = (ez − e−z)/(ez + e−z)

4 / 19



Neuron (Contd.)

• An example: logistic regression function

g(x) =
1

1 + exp(−wTx− b)

• Break it into two computations
• z = wTx+ b
• a = σ(z) where σ(z) = 1/(1 + e−z)

5 / 19



Neural Feedforward Networks

• In feedforward networks, information flows through the function being
evaluated from x, through the intermediate computations used to define f ,
and finally to the output y

• The model is associated with a directed acyclic graph describing how the
functions are composed together
• E.g., we use a chain to represent f(x) = f3(f2(f1(x)))

• If we take sigmod function as the activation function
• z1 = w1x+ b1 and a1 = σ(z1)

• z2 = w2a1 + b2 and a2 = σ(z2)

• z3 = w3a2 + b3 and a3 = σ(z3)

6 / 19



Neural Feedforward Networks (Contd.)

• The architecture of feedforward neural networks
• Input layer, hidden layers (consisting of hidden units), and output layer

7 / 19



Neural Feedforward Networks (Contd.)

• We approximate f∗(x) by learning f(x) from the given training data
• In the output layer, f(x) ≈ y for each training data, but the behavior of the

other layers is not directly specified by the training data
• Learning algorithm must decided how to use those intermediate layers such

that right results can be obtained in the output layer, but the training data
do not say what each individual layer should do

• The only thing we must provide to the neural network is a suffcient number
of training examples (x(i), y(i))

• It can be diffcult to understand the features a neural network has invented;
therefore, people refer to neural networks as a black box

8 / 19



Gradient Descent (GD) Algorithm

• If the multi-variable cost (or loss) function L(θ) is differentiable in a
neighborhood of a point θ, then L(θ) decreases fastest if one goes from θ
in the direction of the negative gradient of L at θ

• Find a local minimum of a differentiable function using gradient descent

θj ← θj − α
∂L(θ)
∂θj

, ∀j

where α is so-called learning rate

• Variations
• Gradient ascent algorithm
• Stochastic gradient descent/ascent
• mini-batch gradient descent/ascent

9 / 19



Back-Propagation: Warm Up
• w[l]

jk is the weight from the k-th neuron in the (l − 1)-th layer to the j-th
neuron in the l-th layer

• b[l]j is the bias of the j-th neuron in the l-th layer

• a[l]j is the activation of the j-th neuron in the l-th layer

a
[l]
j = σ

(∑
k

w
[l]
jka

[l−1]
k + b

[l]
j

)

10 / 19



Back-Propagation: Warm Up

• Vectorization
a[l] = σ(w[l]a[l−1] + b[l])

where σ(·) is an element-wise function such that σ(v)j = σ(vj)

• Introduce an intermediate variable

z[l] = w[l]a[l−1] + b[l]

• We thus have
a[l] = σ(w[l]a[l−1] + b[l]) = σ(z[l])

• z[l] is the weighted input to the neurons in layer l

• z[l]j =
∑

k w
[l]
jka

[l−1]
k + b

[l]
j is the weighted input to the activation function for

neuron j in layer l

11 / 19



Back-Propagation: Warm Up

• Assumptions on the cost function
• The loss function can be written as the average over the loss functions from

individual training samples

L =
1

m

m∑
i=1

Li

• Backpropagation computes the gradients with respect to only one single
training sample as given by ∂Li/∂w and ∂Li/∂b

• We then calculate ∂L/∂w and ∂L/∂b by averaging the gradients cross
different training samples

• The loss function can be written as a function of the output from the neural
network

• Hadamard product: Elementwise product of two vectors s� t such that
(s� t)j = sjtj [

1
2

]
�
[
3
4

]
=

[
1 ∗ 3
2 ∗ 4

]
=

[
3
8

]

12 / 19



Fundamental Equations

• The error in the j-th neuron in the l-th layer:

δ
[l]
j =

∂L
∂z

[l]
j

• An equation for the error in the output layer

δ
[L]
j =

∂L
∂a

[L]
j

σ′(z
[L]
j )

• ∂L/∂a[L]
j measures how fast the loss is changing as a function of the j-th

output activation
• σ′(z[L]

j ) measures how fast the activation function σ is changing at zLj

• A vectorized form
δ[L] = 5aL � σ′(z[L])

13 / 19



Fundamental Equations

• An equation for the error δl in terms of the error in the next layer δl+1

δ[l] = ((w[l+1])T δ[l+1])� σ′(z[l])

• (w[l+1])T δ[l+1] is to move the error backward through the networks, giving
us some sort of measure of the error at the output of the l-th layer

• ((w[l+1])T δ[l+1])� σ′(z[l]) is to move the error backward through the
activation function in the layer l, giving us the error δl in the weight input
to layer l

• So far, we can compute δ[l] for any layer in the network

14 / 19



Fundamental Equations

• Proof: Rewrite δ
[l]
j = ∂L/∂z[l]j in terms of δ

[l]
k = ∂L/∂z[l+1]

k
• By the chain rule,

δ
[l]
j =

∂L
∂z

[l]
j

=
∑
k

∂L
∂z

[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

=
∑
k

∂z
[l+1]
k

∂z
[l]
j

δ
[l+1]
k

• Since

z
[l+1]
k =

∑
j

w
[l+1]
kj a

[l]
j + b

[l+1]
k =

∑
j

w
[l+1]
kj σ(z

[l]
j ) + b

[l+1]
k ,

we have
∂z

[l+1]
k

∂z
[l]
j

= w
[l+1]
kj σ′(z

[l]
j )

• Hence,
δ
[l]
j =

∑
k

w
[l+1]
kj δ

[l+1]
k σ′(z

[l]
j )

15 / 19



Fundamental Equations

• An equation for the rate of change of the loss with respect to any bias in
the network

∂L
∂b

[l]
j

= δ
[l]
j ⇒

∂C

∂b
= δ

• Proof

∂L
∂b

[l]
j

=
∂L
∂z

[l]
j

·
∂z

[l]
j

∂b
[l]
j

= δ
[l]
j ·

∂

∂b
[l]
j

(∑
k

w
[l]
jka

[l−1]
k + b

[l]
j

)
= δ

[l]
j

16 / 19



Fundamental Equations

• An equation for the rate of change of the loss with respect to any weight in
the network

∂L
∂w

[l]
jk

= a
[l−1]
k δ

[l]
j

• Proof

∂L
∂w

[l]
jk

=
∂L
∂z

[l]
j

·
∂z

[l]
j

∂w
[l]
jk

= δ
[l]
j ·

∂

∂w
[l]
jk

(∑
k

w
[l]
jka

[l−1]
k + b

[l]
j

)
= a

[l−1]
k δ

[l]
j

17 / 19



Backpropagation Algorithm

• The backpropagation equations provides us with a way of computing the
gradient of the cost function

• Input: Set the corresponding activation a[1] for the input layer

• Feedforward: For each l = 2, 3, · · · , L, compute z[l] = w[l]a[l−1] + b[l] and
a[l] = σ(z[l])

• Output error δ[L] = 5aL � σ′(z[L])

• Backpropagate the error: For each l = L− 1, L− 2, · · · , 2, compute
δ[l] = ((w[l+1])T δ[l+1])� σ′(z[l])

• Output: The gradient of the loss function is calculated by
∂L/∂w[l]

jk = a
[l−1]
k δ

[l]
j and ∂L/∂b[l]j = δ

[l]
j

• BP algorithm is usually combined with stochastic gradient descent
algorithm or mini-batch gradient descent algorithm

18 / 19



Thanks!

Q & A

19 / 19


