Gradient: The Direction of Steepest Ascent

Feng Li
School of Computer Science and Technology
Shandong University (Qingdao), China
Email: fli@sdu.edu.cn

September 2019

1 Directional Derivative

Consider a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Definition 1. The directional derivative of $f\left(\right.$ at $\left.x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}\right)$ in the direction of $u \in \mathbb{R}^{n}$ is

$$
\begin{equation*}
\nabla_{u} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h u)-f(x)}{h} \tag{1}
\end{equation*}
$$

Intuitively, $\nabla_{u} f(x)$ can be regarded as the rate at which f is increased as $x \rightarrow \theta$ in direction u. When u is a the i-th standard unit vector $e_{i}{ }^{1}$ (where $i=1,2, \cdots, n)$, we have $\nabla_{u} f(x)=f_{i}^{\prime}(x)$, where $f_{i}^{\prime}(x)=\frac{\partial f(x)}{\partial x_{i}}$ is the partial derivative of $f(x)$ with respect to x_{i}.

Theorem 1. For any n-dimensional vector $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$, the directional derivative of f in the direction of u can be represented as

$$
\begin{equation*}
\nabla_{u} f(x)=\sum_{i=1}^{n} f_{i}^{\prime}(x) u_{i} \tag{2}
\end{equation*}
$$

Proof. Let $g(h)=f(x+h u)$. The derivative of g at 0 is

$$
\begin{align*}
g^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h u)-f(x)}{h} \\
& =\nabla_{u} f(x) \tag{3}
\end{align*}
$$

[^0]On the other hand, by the chain rule, we have

$$
\begin{equation*}
g^{\prime}(h)=\sum_{i=1}^{n} f_{i}^{\prime}(x) \frac{d}{d h}\left(x+h u_{i}\right)=\sum_{i=1}^{n} f_{i}^{\prime}(x) u_{i} \tag{4}
\end{equation*}
$$

Let $h=0, g^{\prime}(0)=\sum_{i=1}^{n} f_{i}^{\prime}(x) u_{i}$, substituting which into Eq. (3), we get Eq. (2).

2 Gradient

Definition 2. The gradient of f is a vector function $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\begin{equation*}
\nabla f(x)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} e_{i} \tag{5}
\end{equation*}
$$

where e_{i} is the i-th standard unit vector.
Based on Definition 2 and Theorem 1, $\nabla_{u} f(x)$ can be re-written as the dot product of $\nabla f(x)$ and u, i.e.

$$
\begin{equation*}
\nabla_{u} f(x)=\nabla f(x) \cdot u=\|\nabla f(x)\|\|u\| \cos a \tag{6}
\end{equation*}
$$

where a is the angle between $\nabla f(x)$ and u. Without of loss of generality, we assume u is a unit vector. Then

$$
\begin{equation*}
\nabla_{u} f(x)=\|\nabla f(x)\| \cos a \tag{7}
\end{equation*}
$$

Recall that $\nabla_{u} f(x)$ represent the rate at which $f(x)$ changes in the direction u, the question is: "in what direction, f changes at the highest rate?" Since $\cos a \in[-1,1]$, when u is the direction of $\nabla f(x)$ such that $a=0$, we have the maximum directional derivative of $f(x)$, which implies that $\nabla f(x)$ indicates the direction of steepest ascent of $f(x)$. On the other hand, $-\nabla f(x)$ is the direction of steepest descent of $f(x)$.

[^0]: ${ }^{1} e_{i}$ is a unit vector where the i-the element is 1 while the others are 0 's

