Gradient: The Direction of Steepest Ascent

Feng Li School of Computer Science and Technology Shandong University (Qingdao), China Email: fli@sdu.edu.cn

September 2019

1 Directional Derivative

Consider a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$.

Definition 1. The directional derivative of f (at $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$) in the direction of $u \in \mathbb{R}^n$ is

$$\nabla_u f(x) = \lim_{h \to 0} \frac{f(x+hu) - f(x)}{h} \tag{1}$$

Intuitively, $\nabla_u f(x)$ can be regarded as the rate at which f is increased as $x \to \theta$ in direction u. When u is a the *i*-th standard unit vector e_i^{-1} (where $i = 1, 2, \dots, n$), we have $\nabla_u f(x) = f'_i(x)$, where $f'_i(x) = \frac{\partial f(x)}{\partial x_i}$ is the partial derivative of f(x) with respect to x_i .

Theorem 1. For any n-dimensional vector $u = (u_1, u_2, \dots, u_n)$, the directional derivative of f in the direction of u can be represented as

$$\nabla_u f(x) = \sum_{i=1}^n f'_i(x)u_i \tag{2}$$

Proof. Let g(h) = f(x + hu). The derivative of g at 0 is

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h}$$
$$= \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h}$$
$$= \nabla_u f(x)$$
(3)

 $^{{}^{1}}e_{i}$ is a unit vector where the *i*-the element is 1 while the others are 0's

On the other hand, by the chain rule, we have

$$g'(h) = \sum_{i=1}^{n} f'_i(x) \frac{d}{dh}(x + hu_i) = \sum_{i=1}^{n} f'_i(x)u_i$$
(4)

Let $h = 0, g'(0) = \sum_{i=1}^{n} f'_i(x)u_i$, substituting which into Eq. (3), we get Eq. (2).

2 Gradient

Definition 2. The gradient of f is a vector function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\nabla f(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} e_i \tag{5}$$

where e_i is the *i*-th standard unit vector.

Based on **Definition** 2 and **Theorem** 1, $\nabla_u f(x)$ can be re-written as the dot product of $\nabla f(x)$ and u, i.e.

$$\nabla_u f(x) = \nabla f(x) \cdot u = \|\nabla f(x)\| \|u\| \cos a \tag{6}$$

where a is the angle between $\nabla f(x)$ and u. Without of loss of generality, we assume u is a unit vector. Then

$$\nabla_u f(x) = \|\nabla f(x)\| \cos a \tag{7}$$

Recall that $\nabla_u f(x)$ represent the rate at which f(x) changes in the direction u, the question is: "in what direction, f changes at the highest rate?" Since $\cos a \in [-1, 1]$, when u is the direction of $\nabla f(x)$ such that a = 0, we have the maximum directional derivative of f(x), which implies that $\nabla f(x)$ indicates the direction of steepest ascent of f(x). On the other hand, $-\nabla f(x)$ is the direction of steepest descent of f(x).