
Experiment 3: Regularization

October 20, 2019

1 Description

In this exercise, you will implement regularized linear regression and regularized
logistic regression.

2 Data

To begin, download data3.zip and extract the files from the zip file. This data
bundle contains two sets of data, one for linear regression (ex3Linx.dat and
ex3Liny) and the other for logistic regression (ex3Logx.dat and ex3Logy.dat).
It also includes a helper function named “map feature.m” which will be used for
logistic regression. Make sure that this function’s m-file is placed in the same
working directory where you plan to write your code.

3 Regularized Linear Regression

The first part of this exercise focuses on regularized linear regression and the
normal equations. Load the data files “ex3Linx.dat” and “ex3Liny.dat” into
your program. These correspond to the “x” and “y” variables that you will
start out with. Notice that in this data, the input “x” is a single feature, so you
can plot y as a function of x on a 2-dimensional graph (try it yourself): From
looking at this plot, it seems that fitting a straight line might be too simple of
an approximation. Instead, we will try fitting a higher-order polynomial to the
data to capture more of the variations in the points.

Let’s try a fifth-order polynomial. Our hypothesis will be

hθ(x) = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4 + θ5x

5 (1)

This means that we have a hypothesis of six features, because x0, x1, . . . x5 are
now all features of our regression. Notice that even though we are producing a
polynomial fit, we still have a linear regression problem because the hypothesis
is linear in each feature.

Since we are fitting a 5th-order polynomial to a data set of only 7 points,
over-fitting is likely to occur. To guard against this, we will use regularization
in our model. Recall that in regularization problems, the goal is to minimize
the following cost function with respect to θ:

J(θ) =
1

2m

 m∑
i=1

(hθ(x
(i))− y(i))2 + λ

n∑
j=1

θ2j

 (2)
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Figure 1: Data samples.

where λ is the regularization parameter. The regularization parameter λ is a
control on your fitting parameters. As the magnitues of the fitting parameters
increase, there will be an increasing penalty on the cost function. This penalty
is dependent on the squares of the parameters as well as the magnitude of λ.
Also, notice that the summation after λ does not include θ20.

Now we will find the best parameters of our model using the normal equa-
tions. Recall that the normal equations solution to regularized linear regression
is

θ = (XTX + λ


0

1
. . .

1

)−1XT~y

The matrix following λ is an (n + 1) × (n + 1) diagonal matrix with a zero in
the upper left and ones down the other diagonal entries. (Remember that n is
the number of features, not counting the intecept term). The vector ~y and the
matrix X have the same definition they had for unregularized regression.

Using this equation, find values for θ using the three regularization
parameters below:

a λ = 0 (this is the same case as non-regularized linear regression)

b λ = 1

c λ = 10

As you are implementing your program, keep in mind that X is an m× (n+ 1)
matrix, because there are m training examples and n features, plus an x0 = 1
intercept term. In the data provided for this exercise, you were only give the
first power of x. You will need to include the other powers of x in your feature
vector X, which means that the first column will contain all ones, the next
column will contain the first powers, the next column will contain the second
powers, and so on. You can do this in Matlab/Octave with the command
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x = [ ones (m, 1) , x , x . ˆ 2 , x . ˆ 3 , x . ˆ 4 , x . ˆ 5 ] ;

Show the values of θ under different λ’s. Also, plot the polynomial
fit for each value of λ in Fig. 1. For example, if λ = 0, you will get
plots similar to the following Fig. 3. From these results, what can you
learn about how the regularization parameter λ affects your model?
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Figure 2: λ = 0

4 Regularized Logistic Regression

In this 2nd part of the exercise, you will implement regularized logistic regression
using Newton’s Method. To begin, load the files ex3Logx.dat and ex3Logy.dat
into your program. This dataset represents the training set of a logistic regres-
sion problem with two features. To avoid confusion later, we will refer to the two
input features contained in “ex3Logx.dat” as u and v. So in the “ex3Logx.dat”
file, the first column of numbers represents the feature u, which you will plot
on the horizontal axis, and the second feature represents v, which you will plot
on the vertical axis.

After loading the data, plot the points using different markers to distinguish
between the two classifications. The commands in Matlab/Octave will be:

x = load ( ’ ex3Logx . dat ’ ) ;
y = load ( ’ ex3Logy . dat ’ ) ;
figure
% Find the i nd i c e s f o r the 2 c l a s s e s
pos = find ( y ) ; neg = find ( y == 0 ) ;
plot ( x ( pos , 1 ) , x ( pos , 2 ) , ’+ ’ )
hold on
plot ( x ( neg , 1 ) , x ( neg , 2 ) , ’ o ’ )

After plotting your image, it should look something like this:
We will now fit a regularized regression model to this data. Recall that in
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Figure 3: Data samples.

logistic regression, the hypothesis function is

hθ(x) = g(θTx) =
1

1 + e−θT x
= P (y = 1|x; θ)

In this exercise, we will assign x to be all monomials (meaning polynomial
terms) of u and v up to the sixth power:

x =



1
u
v
u2

uv
v2

u3

...
uv5

v6


To clarify this notation: we have made a 28-feature vector x where x0 = 1, x1 =
u, x2 = v, . . . x28 = v6. Remember that u was the first column of numbers in
your “ex3Logx.dat” file and v was the second column. From now on, we will
just refer to the entries of x as x0, x1, and so on instead of their values in terms
of u and v.

To save you the trouble of enumerating all the terms of x, we’ve included
a Matlab/Octave helper function named “map feature” that maps the original
inputs to the feature vector. This function works for a single training example
as well as for an entire training. To use this function, place “map feature.m ”in
your working directory and call

x = map feature (u , v )
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This assumes that the two original features were stored in column vectors named
“u” and “v”. If you had only one training example, each column vector would
be a scalar. The function will output a new feature array stored in the variable
“x”. Of course, you can use any names you’d like for the arguments and the
output. Just make sure your two arguments are column vectors of the same
size.

Before building this model, recall that our objective is to minimize the cost
function in regularized logistic regression:

J(θ) = − 1

m

m∑
i=1

[y(i) log(hθ(x
(i))) + (1− y(i)) log(1− hθ(x(i)))] +

λ

2m

n∑
j=1

θ2j

Notice that this looks like the cost function for unregularized logistic regression,
except that there is a regularization term at the end. We will now minimize
this function using Newton’s method.

Recall that the Newton’s Method update rule is

θ(t+1) = θ(t) −H−1∇θJ

This is the same rule that you used for unregularized logistic regression in Ex-
ercise 4. But because you are now implementing regularization, the gradient
∇θ(J) and the Hessian H have different forms:

∇θJ =



1
m

∑m
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
0

1
m

∑m
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
1 + λ

mθ1
1
m

∑m
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
2 + λ

mθ2
...

1
m

∑m
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
n + λ

mθn

 (3)

H =
1

m

[
m∑
i=1

hθ(x
(i))
(

1− hθ(x(i))
)
x(i)

(
x(i)
)T]

+
λ

m


0

1
. . .

1

 (4)

Notice that if you substitute λ = 0 into these expressions, you will see the
same formulas as unregularized logistic regression. Also, remember that in these
formulas,

1. x(i) is your feature vector, which is a 28×1 vector in this exercise.

2. ∇θJ is a 28×1 vector.

3. x(i)(x(i))T and H are 28×28 matrices.

4. y(i) and hθ(x
(i)) are scalars.

5. The matrix following λ
m in the Hessian formula is a 28x28 diagonal matrix

with a zero in the upper left and ones on every other diagonal entry.

Now run Newton’s Method on this dataset using the three values of lambda
below:
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a λ = 0 (this is the same case as non-regularized linear regression)

b λ = 1

c λ = 10

Print out the value of J(θ) during each iteration, to determine whether
Newtons’s method has converged. J(θ) should not be decreasing at any
point during Newton’s Method. If it is, check that you have defined J(θ) cor-
rectly. Also check your definitions of the gradient and Hessian to make sure
there are no mistakes in the regularization parts.

After convergence, use your values of theta to find the decision boundary in
the classification problem. The decision boundary is defined as the line where

P (y = 1|x; θ) = 0.5 =⇒ θTx = 0

Plotting the decision boundary here will be trickier than plotting the best-fit
curve in linear regression. You will need to plot the θTx = 0 line implicity, by
plotting a contour. This can be done by evaluating θTx over a grid of points
representing the original u and v inputs, and then plotting the line where θTx
evaluates to zero. Use the following codes to plot the decision bound-
aries under different values for θ.

% Define the ranges o f the g r i d
u = linspace (−1 , 1 . 5 , 2 00 ) ;
v = linspace (−1 , 1 . 5 , 2 00 ) ;

% I n i t i a l i z e space f o r the va lue s to be p l o t t e d
z = zeros ( length (u ) , length ( v ) ) ;

% Evaluate z = the ta ∗x over the g r i d
for i = 1 : length (u)

for j = 1 : length ( v )
z ( i , j ) = map feature (u( i ) , v ( j ) )∗ theta ;

end
end

% Because o f the way tha t contour p l o t t i n g works
% in Matlab , we need to transpose z , or
% e l s e the ax i s o r i en t a t i on w i l l be f l i p p e d !
z = z ’
% Plot z = 0 by s p e c i f y i n g the range [0 , 0 ]
contour (u , v , z , [ 0 , 0 ] , ’ LineWidth ’ , 2)

Finally, because there are 28 elements θ, we will not provide an element-
by-element comparison in the solutions. Instead, use norm(θ) to calculate the
L2-norm of θ, and check it against the norm in the solutions. How does λ
affect the results?
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