
Experiment 1: Linear Regression

August 27, 2018

1 Description

This first exercise will give you practice with linear regression. These exercises
have been extensively tested with Matlab, but they should also work in Octave,
which has been called a “free version of Matlab”. If you are using Octave, be
sure to install the Image package as well (available for Windows as an option in
the installer, and available for Linux from Octave-Forge).

2 Linear Regression

Recall that the linear regression model is

hθ(x) = θTx =

n∑
j=0

θjxj , (1)

where θ is the parameter which we need to optimize and x is the (n + 1)-
dimensional feature vector 1. Given a training set {x(i)}i=1,··· ,m, our goal is to
find the optimal value of θ such that the objective function J(θ), as shown in
Equation (2), can be minimized.

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 (2)

One of the optimization approach is gradient descent algorithm. The algorithm
is performed iteratively, and in each iteration, we update parameter θ according
to the the following rule

θj := θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j (3)

where α is so-called “learning rate” based on which we can tune the convergence
of the gradient descent.

1A training data is actually n-dimensional, i.e., x = [x1, x2, · · · , xn]. For each training
data, we have an extra intercept item x0 = 1. Therefore, the resulting feature vector is
(n+ 1)-dimensional.

1

3 2D Linear Regression

We start a very simple case where n = 1. Download data1.zip, and extract the
files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example
measurements of heights for various boys between the ages of two and eights.
The y-values are the heights measured in meters, and the x-values are the ages
of the boys corresponding to the heights. Each height and age tuple constitutes
one training example (x(i), y(i) in our dataset. There are m = 50 training
examples, and you will use them to develop a linear regression model using
gradient descent algorithm, based on which, we can predict the height given a
new age value.

In Matlab/Octave, you can load the training set using the commands

x = load (’ ex1x . dat ’) ;
y = load (’ ex1y . dat ’) ;

This will be our training set for a supervised learning problem with n = 1
features (in addition to the usual x0 = 1, so x ∈ R2). If you’re using Mat-
lab/Octave, run the following commands to plot your training set (and label
the axes):

figure % open a new f i g u r e window
plot (x , y , ’ o ’) ;
ylabel (’ Height in meters ’)
xlabel (’Age in years ’)

You should see a series of data points similar to Fig. 1.

2 3 4 5 6 7 8

Age in years

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

H
ei

gh
t i

n
m

et
er

s

Figure 1: Plotting the data.

Before starting gradient descent, we need to add the x0 = 1 intercept term
to every example. To do this in Matlab/Octave, the command is

m = length (y) ; % sto r e the number o f t r a i n i n g examples
x = [ones (m, 1) , x] ; % Add a column of ones to x

2

From this point on, you will need to remember that the age values from your
training data are actually in the second column of x. This will be important
when plotting your results later.

We implement linear regression for this problem. The linear regression model
in this case is

hθ(x) = θTx =

1∑
i=0

θixi = θ1x1 + θ2, (4)

(1) Implement gradient descent using a learning rate of α = 0.07. Initialize
the parameters to θ = ~0 (i.e., θ0 = θ1 = 0), and run one iteration of gradient
descent from this initial starting point. Record the value of of θ0 and θ1
that you get after this first iteration.

(2) Continue running gradient descent for more iterations until θ converges.
(this will take a total of about 1500 iterations). After convergence, record
the final values of θ0 and θ1 that you get, and plot the straight line
fit from your algorithm on the same graph as your training data
according to θ. The plotting commands will look something like this:

hold on % Plot new data wi thout c l e a r i n g o ld p l o t
plot (x (: , 2) , x∗ theta , ’− ’) % remember t ha t x i s now a matrix

% with 2 columnsand the second
% column conta ins the time in f o

legend (’ Tra in ing data ’ , ’ L inear r e g r e s s i o n ’)

Note that for most machine learning problems, x is very high dimensional, so
we don’t be able to plot hθ(x). But since in this example we have only one
feature, being able to plot this gives a nice sanity-check on our result.

(3) Finally, we’d like to make some predictions using the learned hypothesis.
Use your model to predict the height for two boys of ages 3.5 and 7.

4 Understanding J(θ)

We’d like to understand better what gradient descent has done, and visualize
the relationship between the parameters θ ∈ R2 and J(θ). In this problem, we’ll
plot J(θ) as a 3D surface plot. (When applying learning algorithms, we don’t
usually try to plot J(θ) since usually θ ∈ Rn is very high-dimensional so that we
don’t have any simple way to plot or visualize J(θ). But because the example
here uses a very low dimensional θ ∈ R2, we’ll plot J(θ) to gain more intuition
about linear regression.)

To get the best viewing results on your surface plot, use the range of theta
values that we suggest in the code skeleton below.

J va l s = zeros (100 , 100) ; % i n i t i a l i z e Jva l s to
% 100∗100 matrix o f 0 ’ s

t h e t a 0 va l s = linspace (−3 , 3 , 100) ;
t h e t a 1 va l s = linspace (−1 , 1 , 100) ;
for i = 1 : length (t h e t a 0 va l s)

for j = 1 : length (t h e t a 1 va l s)
t = [t h e t a 0 va l s (i) ; t h e t a 1 va l s (j)] ;
J v a l s (i , j) = %% YOUR CODE HERE %%
end

end

3

Figure 2: The relationship between J and θ

% Plot the sur face p l o t
% Because o f the way meshgrids work in the su r f command , we
% need to transpose J v a l s b e f o r e c a l l i n g sur f , or e l s e the
% axes w i l l be f l i p p e d
J va l s = J va l s ’
figure ;
surf (the ta0 va l s , th e ta1 va l s , J v a l s)
xlabel (’ \ the ta 0 ’) ; ylabel (’ \ the ta 1 ’)

You should get a figure similar to Fig. 2. If you are using Matlab/Octave, you
can use the orbit tool to view this plot from different viewpoints.

What is the relationship between this 3D surface and the value of
θ0 and θ1 that your implementation of gradient descent had found?
Visualize the relationship by both surf and contour commands.

Remarks: For the surf function surf(x, y, z), if x and y are vectors, x = 1 :
columns(z) and y = 1 : rows(z). Therefore, z(i, j) is actually calculated based
on x(j) and y(i). This rule is also applicable to the contour function. We can
specify the number and the distribution of contours in the contour function, by
introduction different spaced vector, e.g., linearly spaced vector (linspace) and
logarithmically spaced vector (logspace). Try both in this exercises and select
the better one to improve the illustration.

5 Multivariate Linear Regression

We now look at a more complicated case where each training data contains mul-
tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat)
from the zip file. This is a training set of housing prices in Portland, Oregon,
where the outputs y’s are the prices and the inputs x’s are the living area and
the number of bedrooms. There are m = 47 training examples.

Take a look at the values of the inputs x(i) and note that the living areas

4

are about 1000 times the number of bedrooms. This difference means that
preprocessing the inputs will significantly increase gradient descent’s efficiency.

In your program, scale both types of inputs by their standard deviations and
set their means to zero. In Matlab/Octave, this can be executed with

sigma = std (x) ;
mu = mean(x) ;
x (: , 2) = (x (: , 2) − mu(2)) . / sigma (2) ;
x (: , 3) = (x (: , 3) − mu(3)) . / sigma (3) ;

5.1 Selecting A Learning Rate Using J(θ)

Now it’s time to select a learning rate α. The goal of this part is to pick a good
learning rate in the range of

0.001 ≤ α ≤ 10

You will do this by making an initial selection, running gradient descent and
observing the cost function, and adjusting the learning rate accordingly. Recall
that the cost function is defined in Equation (2). The cost function can also be
written in the following vectorized form,

J(θ) =
1

2m
(Xθ − ~y)

T
(Xθ − ~y)

where

~y =

y(1)

y(2)

...
y(m)

 , X =

−(x(1))T−
−(x(2))T−

...
−(x(m))T−

The vectorized version is useful and efficient when you’re working with numerical
computing tools like Matlab/Octave. If you are familiar with matrices, you can
prove to yourself that the two forms are equivalent.

While in the previous exercise you calculated J(θ) over a grid of θ0 and θ1
values, you will now calculate J(θ) using the θ of the current stage of gradient
descent. After stepping through many stages, you will see how J(θ) changes as
the iterations advance.

Now, run gradient descent for about 50 iterations at your initial learning
rate. In each iteration, calculate J(θ) and store the result in a vector J . After
the last iteration, plot the J values against the number of the iteration. In
Matlab/Octave, the steps would look something like this:

theta = zeros (s ize (x (1 , :))) ’ ; % i n i t i a l i z e f i t t i n g parameters
alpha = %% Your i n i t i a l l e a rn ing ra t e %%
J = zeros (50 , 1) ;

for num i te ra t i ons = 1:50
J (num i t e ra t i ons) = %% Calcu la t e your cos t func t i on here %%
theta = %% Resu l t o f g rad i en t descent update %%

end

% now p l o t J
% t e c hn i c a l l y , the f i r s t J s t a r t s at the zero−e th i t e r a t i o n
% but Matlab/Octave doesn ’ t have a zero index

5

figure ;
plot (0 : 4 9 , J (1 : 5 0) , ’− ’)
xlabel (’Number o f i t e r a t i o n s ’)
ylabel (’ Cost J ’)

If you picked a learning rate within a good range, your plot should appear like
the figure below.

0 10 20 30 40 50

Number of iterations

0

1

2

3

4

5

6

7

C
os

t J

1010

If your graph looks very different, especially if your value of J(θ) increases or
even blows up, adjust your learning rate and try again. We recommend testing
alphas at a rate of of 3 times the next smallest value (i.e. 0.01, 0.03, 0.1, 0.3 and
so on). You may also want to adjust the number of iterations you are running
if that will help you see the overall trend in the curve.

To compare how different learning learning rates affect convergence, it’s
helpful to plot J for several learning rates on the same graph. In Matlab/Octave,
this can be done by performing gradient descent multiple times with a hold on
command between plots. Concretely, if you’ve tried three different values of
alpha (you should probably try more values than this) and stored the costs in
J1, J2 and J3, you can use the following commands to plot them on the same
figure:

plot (0 : 4 9 , J1 (1 : 5 0) , ’b− ’) ;
hold on ;
plot (0 : 4 9 , J2 (1 : 5 0) , ’ r− ’) ;
plot (0 : 4 9 , J3 (1 : 5 0) , ’ k− ’) ;

The final arguments ‘b-’, ‘r-’, and ’k-’ specify different plot styles for the
plots. Type

help plot

at the Matlab/Octave command line for more information on plot styles.
Answer the following questions:

1. Observe the changes in the cost function happens as the learning rate
changes. What happens when the learning rate is too small? Too large?

2. Using the best learning rate that you found, run gradient descent until
convergence to find

6

(a) The final values of θ

(b) The predicted price of a house with 1650 square feet and 3 bedrooms.
Don’t forget to scale your features when you make this prediction!

7

