Computer Organization AND Design
The Hardware/Software Interface

Large and Fast: Exploiting Memory Hierarchy

Dr. Feng Li
fli@sdu.edu.cn
https://funglee.github.io

Outline

5.1 Introduction
5.2 The Basics of Caches

5.3 Measuring and Improving Cache Performance

5.4 Virtual Memory

5.5 A Common Framework for Memory Hierarchies

5.6 Virtual Machines

5.7 Using a Finite-State Machine to Controla Simple Cache

5.8 Parallelism and Memory Hierarchies: Cache Coherence

5.9 Advanced Material: implementing Cache Controllers

5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and intel Nehalem
Memory Hierarchies

5.11 Fallacies and Pitfalls

Introduction

* Locality---- two important concepts

* Temporal locality (locality in time): If an item is referenced,

it will tend to be referenced again soon.

» Spatial locality (locality in space): If an item is referenced,
items whose addresses are close by will tend to be

referenced soon.

Memory hierarchy

e A structure that uses multiple level of memories; as
the distance from the processor increases, the size
of the memories and the access time both increase

* Different levels of memory have different speeds
and sizes

* The faster memories are more expensive per bit
than slower memories and thus are smaller

The basic structure of a memory hierarchy

Speed Processor

Fastest Memory
Memory

Slowest Memory

Current
Size Cost ($/bit) technology
Smallest Highest SRAM
DRAM
Biggest Lowest Magnetic disk

By implementing the memory system as a hierarchy, the user has the illusion of a
memory that is as large as the lowest level of the hierarchy, but can be accessed as if
it were all built from the fastest memory. Flash memory has replaced disks in many
embedded devices, and may lead to a new level in the storage hierarchy for desktop

and server computers

5

* Block (or line): The minimum unit of information that
can be either present or not present in cache

Memory Basics

e RAM: Random Access Memory

»Historically defined as memory array with individual bit
access

» Refers to memory with both read and write capabilities

e ROM: Read Only Memory

»No capabilitiesfor “online” memory write operations
»Write typically requires high voltage or erasing by UV light

* Volatility of memory

»Volatile memory loses data over time or when there is no
power (e.g., RAM)

»Non-volatile memory stores data even when power is
removed (e.g., ROM)

* Static vs Dynamic Memory

» Static: Hold data as long as poweris applied (e.g., SRAM, or

Static Random Access Memory)

»Dynamic: Will lose data unless refreshed periodically (e.g.,

DRAM, DynamicRandom Access Memory)

* DRAM to SRAM Comparison

»DRAM is smaller and less expensive per bit
»SRAM is faster

» DRAM requires more peripheral circuitry

* ROM: Read Only Memory

»No capacities for “online” memory write operations

» Data programmed
v’ During fabrication: ROM

v With high voltage: PROM
v’ By control logical: PLA

* PROM: Programmable Read Only Memory
»Programmable by special program tools/modes
»Read only memoryduring normaluse
» Non-volatile

» Erase operation
v EPROM: Erasable PROM uses UV light to reset all bits
v/ EEPROM: Electrically-erasable PROM, erase with control voltage

DRAM
* very high
* must be periodicallyrefreshed and thus is slower than SRAM
* \olatile: no good for program (long term) storage

SRAM

* fastesttype of memory
* low density, more expensive

EEPROM

* slow/complexto write and thus is not good for fast cache
* non-volatile; bestchoice for program memory

ROM
* hardware coded data; rarely used except for bootup code
Register (flip flop)
e functionallysimilar to SRAM but less dense (and thus expensive)
* reserved for data manipulationapplications

* Every pair of levels in the Processor
memory hierarchy can be
thought of as having an
upper and lower level Y

A

 Within each level, the unit
of information that s T
present or not is called a Data is transferred
block or a line Y

* We wusually transfer an
entire block when we copy
something between levels .

11

Performance of CPU, DRAM and disk

| 1980 | 1990 | 2000 | 2010 | 2010:1980

S so0s0 386 PentumIl Corei?
Clock rate(MHz) 1 20 600 2,500
m Cycle time(ns) 1,000 50 1.6 0.4
1 1 1 4
g;'gf;'t‘;;e(ns) 1,000 50 16 0.1
19,200 320 100 60
m access time(ns) 300 S = 1.5
8,000 100 1 0.06
m access time(ns) 375 100 60 40
typical size(MB) 0.064 4 64 8,000
500 8 0.01 0.0003
1 160 20,000 1,500,000

2,500
2,500
4

10,000

320
200
130,000
9
125,000
1,600,000
29
1,500,000

12

* Main memory is implemented from DRAM
* Caches use SRAM
* Magnetic disk

* Flash memory (EEPROM) is used instead of disks in
many embedded devices

Memory technology Typical access time $ per GB in 2008

SRAM 0.5-2.5 ns $2000-$5000
DRAM 50-70 ns $20-$75
Magnetic disk 5.,000,000-20,000,000 ns $0.20-$2

13

Some important items

* Hit: The CPU accesses the upper level and finds the required data in
some block.

* Miss: The CPU accesses the upper level and fails, but does not find the
required datainany block.

* Hit rate (or hit ratio) is the fraction of memory accesses found in the
upper level, which is usually used as a measurement of the performance
of the memory hierarchy

e Miss rate (1 — hit rate) is the fraction of memory accesses not found in
the upperlevel

* Hit time: The time to access the upper level of the memory hierarchy,
which includes the time needed to determine whether the access is a hit

or a miss.

* Miss penalty: The time required to fetch a block into a level of the
memory hierarchy from the lower level, including the time to access the
block, transmit it from one level to the other, insert it in the level that
experienced the miss, and then pass the blockto the requestor

Exploiting Memory Hierarchy

Increasing distance
from the CPU in

access time
Smaller : V\ coct
Reqisters
Levels in the KB-MB Li‘caChe
memory hierarchy (On-Chip)

L2-Cache (SRAM) "\

o O / Main Memory ORAM) N\,
igger
B Disk ,Tape, ect.

Size of the memory at each level

15

The Basics of Caches

e Cache represents the level of the memory hierarchy
between the processor and main memory; it is also
used to refer to any storage managed to take
advantage of locality of access

* A simple case: the processor requests each one word
and the blocks also consist of a single word

X4 X4
X, X,
Xn -2 Xn -2
Xn -1 Xn -1
X, X,

Xn
X3 X3

a. Before the reference to X,,

* Two questions:

b. After the reference to X,

* Thefigure showsthe cache
just before and just after a
reference to a word X, that
is notinitiallyin the cache

* Thisreference causesa
miss that forces the cache
to fetch X, from memory
andinsertitintothe cache

e How do we know if a data item isin the cache?
e |Ifitis, how dowe find it?

Direct Mapped Cache

* Direct-mapped cache: A cache structure in which each memory
locationis mapped to exactly one locationin the cache
* Direct-mapping algorithm
(Block address) modulo (The number of blocksin the cache)

O
)
o
>
©

000
001
010
011
100
101
110
111

Fortunately, while the cache has 2" blocks, the
corresponding index is equal to the lowest n
bits of memory block address

X

00001 00101 01001 01101 10001 10101 11001 11101
Memory

18

* Unfortunately, each cache location may contain the contents of
a number of different memory locations, how do we know the
data contained in the cache is exactly the one we request

 Addinga tag to the cache

* The tag carries the address information according to which we can
identify whethera word in the cache corresponds to therequested word

O
)
[e)
=

e

000
001
010
011
100
101
110

111

X

00001

00101

01001

01101 10001
Memory

10101

11001

11101

19

* How to recognize if a cache block has valid
information?

* Adding a valid bit

TAG Index Byte offset
\ h)
N |
Block address MOD Numbers of Cache Block
valid bit

Index

000
001
010
011
100
101
110
111

ZlZ2|1Z2|Z2|Z2|Z2|2|Z2

a. The initial state of the cache after power-on

20

Accessing a Cache

* A sequence of nine memory referencesto an
empty eight-block cache

Decimal address Binary address Hit or miss Assigned cache block
of reference of reference in cache (where found or placed)

26 110104y miss (5.6c) (110104 mod 8) = Olotwo
22 101104, hit (101104y,0 Mmod 8) = 11040
26 1101040 hit (1101040 mod 8) = 01040
16 1000040 miss (5.6d) (1000040 mod 8) = 00040
3 0001140 miss (5.6e) (0001140 mod 8) = 0114wo
16 1000040 hit (1000040 mod 8) = 00040
18 1001040 miss (5.6f) (1001040 mod 8) = 01040
16 1000040 hit (1000040 mod 8) = 00040

21

Access sequence

10110,11010,10110,11010

Index
000
001
010
011
100
101
110
111

Index
000
001
010
011
100
101
110
111

(10), Memory(10110)

Z|<|[Z|Z|Z2|Z2|Z2|Z S

b. After handling a miss of address(10110)

Memory(11010)

Z|<|[Z|IZ2|Z2|<|Z|Z S

d. After handling a hit of address(10110)

Index
000
001
010
011
100
101
110
111

Index
000
001
010
011
100
101
110
111

Vv
N
N
Y (11)2 Memory(11010)
N
N
N
Y (10)2 Memory(10110)
N

c. After handling a miss of address(11010)

(10)2

Memory(10110)

e. After handling a hit of address(11010)

22

Access sequence-2

10110,11010,10110,11010,10000,00011,10000,10010

Index
000
001
010
011
100
101
110
111

Index
000
001
010
011
100
101
110
111

ag Pata
Y (10)2 Memory(10000)
N
Y (11)2 Memory(11010)
N
N
N
Y (10)2 Memory(10110)
N

f. After handling a miss of address(10000)

N
Y (11)2 Memory(11010)
Y (00)2 Memory(00011)
N
N
Y (10)2 Memory(10110)
N

h. After handling a hit of address(10000)

Index PR
000 |Y (10), Memory(10000)
001 N
010 | Y (11)2 Memory(11010)
011 Y (00) Memory(00011)
100 N
101 N
10 | Y (10)2 Memory(10110)
111 N
g. After handling a miss of address(00011)
Index
000 Memory(10000)
001
o1q’ Memory(10010)
011" §-Y _ (00, __- Memory(00011)
100 N
101 N
10 | Y (10)2 Memory(10110)
111 N

i. After handling a miss of address(10010)

23

* Areferenced address =tag+index

* Tag field is used to compare with the value of the tag field of the cache
* A cacheindex is used to select the block

Hit

Address (showing bit positions)

Data

3130 -+ 131211---2 10
Byte
offset
420 410
Tag
Index
Index Valid Tag Data
0
1
2
1021
1022
1023
420 432
I~ N
(=

24

* What if a block consists of multiple wrods?
* 32-bit addresses
* Adirect-mapped cache
* The cache size is 2™ blocks, so n bits are used for the index

e The block size is 2™ words (22 bytes), so m bits are used
for the word within the block, and 2 bits are used for the
byte part of the address

* The size of the tag fieldis32 —(n+ m+ 2)
* The total number of bitsin a direct-mapped cache is

2" X (block size + tag size + valid field size)
=2"%x(2M™M%x324+(32—-—n—m-2)+1)
=2"x(2M™x32+ 31 —n—m)

25

Bits in Cache

Example

« How many total bits are required for a direct-mapped cache 16KiB of data
and 4-word blocks, assuming a 32-bit address?

Answer

* One block=4 words = 16 bytes =128 bits

* Cache blocks = 16KiB =+ 16 bytes = 210 blocks

« The size of index field = 10 bits

« 2 bits are used to search for words within a block

« 2 bits are used to search for bytes within a word

« Tag bits = 32-10-2-2 =18 bits

« Total Cache size = 210 X (128+18+1)= 210X 147 bits

* It is about 1.15 times as many as needed just for the data

Mapping an Address to Multiword Cache Block

Example
* Consideracache with 64 blocks and a block size of 16 bytes.
* Whatblock number does byte address 1200 map to?
Answer
 The block is indicated by

(Block address) modulo (Number of cache blocks)
« The address of the block is

(Byte address)/(Bytes per block)

* Note: The block address is the block containing all addresses between

Byte address
Bytes per block

Byte address

J X Bytes per block @i d { J X Bytes per block + (Bytes per block — 1)

Bytes per block

* Therefore, the block number is
Byte address
‘mo dulo 64 = { ‘ modulo 64 = 75 modulo 64 = 11

Bytes per block

Miss Rate VS. Block Size

10%

Miss 59,
rate

0%

ooo

/

OOO

|

O —) o 64K
N
. ~—h h— — 256K
16 32 64 128 256

Block size

28

* Increase block size (reasonably) could decrease
miss rate

* The miss rate may go up eventually if the block size
becomes a significant fraction of the cache size,
because the number of block that can be contained
in the cache will become small, and there will be a
great amount of competition for these blocks

* The excessively large block size may lead to heavier
miss penalty, since we have to transfer more data
from main memory to cache.

Handling Cache Miss

e Cache miss: A request for data from the cache that
cannot be filled because the data is not presentin
the cache

* Cache miss is handled in collaboration with the
processor control unit and with a separate
controller that initiates the memory access and
refills the cache.

* Misses—two kinds of misses

* Instruction cache miss

e Data cache miss

Main steps taken on an instruction cache mi

e Stall the CPU, fetch block from memory, deliver to cache,
restart CPU read

1. Send the original PC value (current PC-4) to the memory.

2. Instruct main memory to perform a read and wait for the
memory to complete its access.

3. Write the cache entry, puttingthe data from memory in the
data portion of the entry, writing the upper bits of the
address (from the ALU) into the tag field, and turning the
valid bit on.

4. Restart the instruction execution at the first step, which will
refetch the instruction again, this time findingit in the cache.

Handling Writes

* Inconsistence: If we are performing a store instruction, we write the
data into only data cache (without changing main memory); thereafter,

memory would have a differentvalue from thatin the cache.

e Solution I: Write-through

A scheme in which writes always update both the cache and the next lower
level of the memory hierarchy, ensuring that data is always consistent

between the two

« When write miss occurs, the block containing the targeted word are first

fetched from the main memory

e Shortcoming: Writing to main memory usually takes a long time

* Advanced write-through

The data are written into both cache and write buffer, such

that the instructions can continue to be executed

The write buffer can hold the datatemporally until the datais

written into the main memory

After that, the corresponding entry of the write buffer can be

freed.

If the write bufferis full, the instruction should be stalled until

the write buffer is available

e Solution Il: write-back

* When a write occurs, the new value is written only to

the block of the cache

* The modified block is written back to the low-level of

the hierarchy when it is replaced

An Example Cache: The Intrinsity FastMATH Proces

e 12-stage pipeline
* Separatedinstruction and data caches
* Each cacheis 16 KiB (or 4096 words), with 16-word blocks

Address (showing bit positions)
31 -+ 1413---65---210

Hit Tag S S CEEES OE;fystgt Data
Index Block offset
18 bits 512 bits
V Tag Data

256
1 ? entries

Mux
432
35

L

Read Request

1. Send the address to the appropriate cache. The address

comes either from the PC (for an instruction) or from the
ALU (for data).

2. If the cache signals hit, the requested word is available on
the data lines. Since there are 16 wordsin the desired
block, we need to select the right one. A block indexfield
is used to control the multiplexor (shown at the bottom of
the figure), which selects the requested word from the 16
words in the indexed block.

3. If the cache signals miss, we send the address to the main
memory. When the memory returns with the data, we
write it into the cache and then read it to fulfill the request.

Writes

* Both write-through and write-back, leaving it up to
the operating system to decide which strategy to
use for an application.

* It has a one-entry write buffer.

* Approximate instruction and data miss rates for the Intrinsity
FastMATH processor for SPEC2000 benchmarks

Instruction miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.10 Approximate instruction and data miss rates for the Intrinsity FastMATH
processor for SPEC CPU2000 benchmarks. The combined miss rate is the effective miss rate seen for
the combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc-
tion and data individual miss rates by the frequency of instruction and data references.

 Combined Cache vs Split Caches
e Total cachesize: 32 KiB
» Split cache effective miss rate: 3.24%
* Combined cache miss rate: 3.18%

* Nevertheless, almost all processors today use splitinstructionand
data caches toincrease cache bandwidth to match what modern
pipelines expect. The advantage of increasing cache bandwidth can
easily overcomes the disadvantage of a slightly increased miss rate

38

Designing the Memory System to Support Cache

Processor Processor Processor
/ﬁultiplexor
Cache I i s Cache
| Cache |
— T //\\
Bus Bus Bus
\\// ‘_‘j — \\ / g
Memory Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3
b. Wider memory organization c. Interleaved memory organization
Memory a. Memory is one word wide, and all accesses are made
sequentially
b. Increasing the bandwidth to memory by widening the
memory and the buses between the processor and
memory, which allows parallel access to multiple

words of the block
c. Increasing the bandwidth by widening the memory but
not the interconnection bus

a. One-word-wide
memory organization

39

Processor

>

Cache

Bus

Memory

Assume
1 clock cycles to send the address

15 memory bus clock cycles for each DRAM
access initiated

1 bus clock cycles to send a word of data
Each block consists of 4 words

Every word is 4 bytes

The miss penalty
1+4 X (1+15)=65 CLKs
Bandwidth: 4%x4 =65 = 1/4

Processor

< >

~_—~TWultiplexor™~_
T TT T

Cache
_//\

Bus

Memory

4

224
e
e
%
.
.
.
‘e
P

Only two times that needed to
: transfer one word.

e With a main memory width of 4 words(128bits)
The miss penalty: 1+1 X (15+1)=17 CLKs
Bandwidth: 4x4 + 17 = 0,98

Equal to time to
transfer one word.

41

Processor

<>

* With 4 banks Interleaved Memory

The miss penalty: 1+15 +(4 X 1)=20 Cache
Bandwidth:4x4 -+ 20 = 0.8 /B\

Memory || Memory || Memory || Memory
bank O bank 1 bank 2 bank 3

Four-way interleaved memory

Parallel access

Word /v(/ Word \Wo!\m
address Bank 0 address Bank address Bank 2 address nk 3
3

0 1 2

4 5 6 7
8 9 10 11
12 13 14 15

Optimizes sequential address access patterns

42

Measuring and Improving Cache Performance

* Improving cache performance

* Reducingthe miss rate by decreasing the probability
that two different memory blocks contends for the same

cache location

e Reducing the miss penalty by introducingan additional

level to the hierarchy (so-called multilevel caching)

* CPU time involvesexecution clock cycles and memory-stall clock
cycles

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
X Clock cycle time

* We assume the memory-stall clock cycles mainly stem from
cache misses

Memory-stall clock cycles = Read-stall cycles + Write-stall cycles

Read-stall cycles = _Reads Read miss rate X Read miss penalty
Program

Write-stall cycles = WIS \write miss rate X Write miss penalty
Program

+ Write buffer stalls

44

* In write-through cache, the read and write misses have the
same penalties

MGH]OI’Y dCCEeSSeS

Memory-stall clock cycles = X Miss rate X Miss penalty

Program

where we assumethatthere is no write buffer stall

Instructions » Misses

Memory-stall clock cycles = .
Program Instruction

X Miss penalty

45

Calculating Cache Performance

* Assume:
Instruction cache miss rate 2%
Data cache miss rate 4%
CPI without any memory stalls 2
Miss penalty 100 cycles for all misses
The frequency of all loads and stores 36%

* Question: How fastera processor would run with a perfect cache?

* Answer: Instruction countisdenoted by]
Instruction miss cycles = 1X2% X100 =2.00]
Data miss cycles = I X36% X 4% X100 =1.44]
Total memory-stallcycles=2.00 1 + 1.44 [=3.44]
CPI with stall = CPI with perfect cache + total memory-stalls

=2+3.44 =544

 The ratio of the CPU execution times is

CPU time with stalls _ IXCPlLyy X Clock cycle _ CPlgtan _544
CPU time with perfect cache X CPLygpeer X Clock cycle CPlperfece 2

* The performance with the perfect cache is better
by 5.44/2=2.72

47

* What if the processor is made faster, but the memory
system is not?

* Reducingthe CPl from 2 to 1 without changing the clock rate

CPU time with stalls ~1+344 444
CPU time with perfect cache 1

* The amount of execution time spent on memory stalls would

3.44 3.44

i _ = 0) = 0]
have risen from - 639% to vy 77%

* The above example does not take into account hit time

* To capture the fact that the time to access data for both hit and
miss affects performance, we use average memory access time
(AMAT) as a metric to examine cache design

AMAT = Time for a hit + Miss rate X Miss penalty

* Find the AMAT for a processor with a 1 ns clock cycle time, a
miss penalty of 20 clock cycles, a miss rate of 0.05 misses per
instruction, and a cache access time (including hit detection) of
1 clock cycle. Assume that the read and write miss penalties are
the same and ignore other write stalls.

AMAT = Time for a hit + Miss rate X Miss panalty
=1+ 0.05 x20
= 20 ns

The disadvantage of a direct-mapped cache

* |f the CPU requires the followingmemory units sequentially:
word O,word 8 and word 0. Word 0 and word 8 both are
mapped to cache block 0, so the third access will be a miss.

* But obviously,if one memory block can be placed in any
cache block, the miss can be avoided. So, there is possibility
that the miss rate can be improved.

OOOOOOOO
OOOOOOOO
OOOOOOOO

AT TR

00001 00101 01001 01101 10001 10101 11001 11101

Memory

The basics of a set-associative cache

* Fully associative cache: A cache structure in which a block
can be placed in any locationin the cache

e Set-associative cache: A cache that has a fixed number of
locations (at least two) where each block can be placed
* A set-associative cache with n locations fora blockis called an n-
way set-associative cache

* Ablockis directlymappedintoaset, and then all the blocksin the
set are searched for a match

* The mappingalgorithm:The set containinga memory blockis
(Block number) modulo (Number of sets in the cache)

* Memory block whose address is 12 in a cache with 8 blocks for
different mapped

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta Ta
9 2 J 2 J 2

Search

_—

oo 1 s TTTTTTT]

52

* An eight-block cache configured as variety-way

One-way set associative

(direct mapped)
Block Tag Data
0
! Two-way set associative
2 Set Tag Data Tag Data
3 0
4 1
5 2
6 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

53

Misses and Associativity in Caches

Assume:

There are three small caches, each consistingof four one-word blocks: one

cache is direct-mapped, the second is two-way set associative, and the third
is fully associative.

Question:

Given the following sequence of block addresses: 0,8,0,6,8, find the number
of misses for each cache organization.

* Direct-mapped cache: Five misses for the five accesses

Block address Cache block

0 (O modulo 4) =0
6 (6 modulo 4) =2
(8 modulo 4) =0

8
Address of memory Contents of cache blocks after reference
blogk accessed Lo |t [2 | 3 |
0

miss Memory[O]
8 miss Memory[8]
0 miss Memory[O]
6 miss Memory[O] Memory[6]
8 miss Memory[8] Memory|[6]

55

* The set-associative cache has two sets with two elements per set
* The least recently used entry is replaced when a miss occurs

* Four misses for five accesses

0 (O modulo 2) =0
6 (6 modulo 2) =0
8 (8 modulo 2) =0
Address of memory Contents of cache blocks after reference
0 miss Memory[O]
8 miss Memory[O0] Memory[8]
0) hit Memory[O] Memory[8]
6 miss Memory[O0] Memory[6]
8 miss Memory[8] Memory[6]

56

* Fully associative cache where a block can be placed
in any available location

* Only three misses for five access

Address of memory Contents of cache blocks after reference
block accessed | ormiss | Block0 | Block1 | Block2 | Block3

miss Memory[O]
8 miss Memory[O] Memory[8]
0) hit Memory[O] Memory[8]
6 miss Memory[O] Memory[8] Memory[6]
8 hit Memory[O] Memory[8] Memory[6]

57

Locating a block in a set-associative cache

e The indexis used to select the set

* The tag is used to choose the block by comparison

with the blocks in the selected set

* The block offsetis the address of the desired data

within the block

Tag Index Block offset

* The implementation of a four-way set-associative cache
requires four comparators and a 4-to-1 multiplexor.

Address
3130.--12111098---3210

| | | |

J22 48
Tag_;
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
[[p [o y
253
254
255
J22 32
(= (= dﬁ) (-
¢ I

ER 4-to-1 multiplexor

Hit Data 59

Size of tags versus set associativity

Assume
Cache size is 4K blocks
Block size is 4 words
Physical address is 32bits

Question

Find the total number of sets and total number of tag bits for variety associatively

Answer
Offset size (Byte) = 16= 24 4 bits for byte address
Number of memory block = 232--16 = 228 28 bits for memory block address
Number of cache block = 212 12 bits for cache block address

For direct-mapped
Bits of index = 12 bits
bits of Tag =(32-12-4) X 4K=16 X 4K=64 Kbits

60

For fwo-way associative

Number of cache set = 212 < 2= 211

Bits of index = 12-1=11 bits

Bits of Tag = (28-11) X2X2K=17X2X2K=68 Kbits
For four-way associative

Number of cache set = 212 - 4= 210

Bits of index = 12-2=10 bits

Bits of Tag =(28-10) X4X1K=18 X4 X1K=72 Kbits
For fully associative

Number of cache set = 212 - 212 = 20

Bits of index = 12-12=0 bits

Bits of Tag =(28-0) X4KX1=112 Kbits

Direct 2-way 4-way Fully

Index(bit) 12 11 10 0
Tag(bit) 16 17 18 28

61

Choosing which block to replace

* Inadirect-mapped cache, the requested block can go in exactlyone
position,and the block occupyingthat position must be replaced.

* In a fully associative cache, all blocks are candidates for replacement.

* In a set-associative cache, we must choose among the blocks in the
selected set.

 The most commonly used scheme is least recently used (LRU), which we
used in the previous example. Inan LRU scheme, the blockreplacedis
the onethat has been unused for the longest time.

* Foratwo-wayset associative cache, the LRU can be implemented easily.
We could keep a single bitin each set. We set the bit whenever a specific
block in the set is referenced, and reset the bit whenever another block
is referenced.

* As associativityincreases, implementing LRU gets harder.

Reducing the Miss Penalty Using Multilevel Caches

* Most microprocessors support an additional level of caching.

* This second-level cache is usually on the same chip and is
accessed whenever a miss occurs in the primary cache. If
the second-level cache contains the desired data, the miss
penalty for the first-level cache will be essentially the access
time of the second-level cache, which will be much less

than the access time of main memory.

* |f neither the primary nor the secondary cache contains the
data, a main memory access is required, and a larger miss
penalty isincurred.

Performance of multilevel caches

Example:
* CPl of1.00n a4GHz machine with a 2% miss rate, 100ns DRAM access
* Adding2nd level cache with 5ns access time decreases miss rateto 0.5%

Miss penalty to main memory is
100ns

ns
clock cycle

= 400 clock cycles
0.25

The effective CPI with onelevel of caching

Total CPl = Base CPI + Memory-stall cycles per instruction

For the processor with one level of caching

Total CPI=1.0 + 2%x400=9

* The CPI with Two level of cache with 0.5% miss rate for main
memory

Total CPI = 1.0 + Primary stalls per instruction + Secondary stalls per instruction

=1+2% X204+ 0.5% X 400
=1.0+0.4+2.0 =3.4

* The processor with secondary cache is faster by 9/3.4=2.6

 Differentcache levels have differentfunctionalities

* The primary cache to focus on minimizing hit time to yield a shorter
clock cycle or fewer pipeline stages,

* The secondary cache to focus on miss rate to reduce the penalty of long
memory access times.

* In comparison to a single-level cache, the primary cache of a
multilevel cache is often smaller. Furthermore, the primary cache
may use a smaller block size, to go with the smaller cache size
and also to reduce the miss penalty.

* In comparison, the secondary cache will be much larger than in a
single-level cache, since the access time of the secondary cache is
less critical. With a larger total size, the secondary cache may use
a larger block size than appropriate with a single-level cache. It
often uses higher associativity than the primary cache given the
focus of reducing miss rates.

Virtual Memory

* Virtual memory: A technique that uses main memory as a
“cache” for secondary storage (e.g., that implemented by
magnetic disks)

* Allow efficient and safe sharing of memory among multiple programs

e Remove the programming burdens of a small, limited amount of main
memory

* A program is compiled with its own address space, while virtual
memory implements the translation of a program’s address
space to physical addresses, which enforces protection of a
program’s address space from other programs.

* Relying on virtual memory, a single user program can exceed

the size of primary memory

 Automatically manage the two levels of the memory hierarchy
represented by main memory (sometimes called physical memory to
distinguish it from virtual memory) and secondary storage.

* A virtual memor
called a page fau

?/ block is called a page, and a virtual memory miss is
t.

* With virtual memory, the processor produces a virtual address, which is
translated by a combination of hardware and software to a physical
address, which in turn can be used to access main memory.

* Virtual memoryalso simplifies loadingthe program for execution by
providingrelocation

Virtual addresses

Address translation

———

Physical addresses

g

:

Disk addresses

The virtually addressed memory
with pages mapped to main
memory.

This process is called address
mapping or address translation.

68

Pages: virtual memory blocks

* The physical page number constitutes the upper portion of
the physical address, while the page offset, which is not
changed, constitutes the lower portion.

* The number of bits in the page offset field determines the
page size.

 The number of virtual pages are usually much larger than the
one of physical pages

3130292827 viviiiininnn 16141312 111098 3210

Virtual page number Page offset

292827 .oifinninn 15141312 111098 3210

\ 4 \

Physical page number Page offset

Physical address

e Page fault: An event that occurs when an accessed page is
not presentin main memory

* A page fault may take millions of clock cycles to process

* Pages should be large enough to try to amortize the high access
time (e.g., 32 KB or 64 KB for today’s desktops and servers)

* Organizations that reduce the page fault rate are attractive (fully
associative placement of pages in memory is usually employed.

 Page faults are handled in software, since it is of light-weight
overhead and has sufficient flexibility for efficient page
replacement

* Write-through will not work for virtual memory, since writes take
too long. Instead, virtual memory systems use write-back.

Placing a page and finding it again

* A virtual page can be mapped to any physical page;
therefore, the OSis allowed to design sophisticated

algorithms and complex data structures for efficient
page replacement

* The main difficult of fully associative replacement is in

locating an entry, as it may be anywhere in the upper
memory hierarchy

* Toresolve the above problem, we adopt page table

* Page table: The table containing the virtual to physical

address translations in a virtual memory system.

* Page table is stored in memory, and its start is indicated in

page table register
e Each program has its own page table

* Page table is typically indexed by the virtual page number;
each entry in the table contains the physical page number

for that virtual page if the page is currently in memory.

Page table register

Virtual address

31 30 29 28 27:ccreerennennecnninnanns 15 14 13 12 11 10 9 8 +ereerse 3210
Virtual page number Page offset
420 412
Valid Physical page number
? ®
Page table
418
Y N
If O then page is not
present in memory
D0 D8 D7 cxnassncnnnnsnsnsssnsenssessnss ev15 14 13 12 11 10 9 8psrees 3210
Physical page number Page offset

Physical address 73

Page faults

* In a virtual memory system, we must keep track of the location on disk of
each page in virtual address space

* When the OS creates a process, it usually creates a space on disk for all the
pages of a process.

e When a page fault occurs, the vinual page

number

OS will be given control] Page table

through exception mechanism. Venl dekadvces Physical memory
e The OS will find the page in the 1 C—

L .

disk by the page table. ! —
e Next,the OS will bringthe 9 .‘>\ /

requested pageinto main K :;757

memory. If all the pagesin] X Disk storage

main memory are in use, the : 4

OS will use LRU strategy to
choose a pageto replace

74

Implementinga completely accurate LRU scheme is too expensive

Most operating systems approximate LRU by keeping track of which
pages have and which pages have not been recently used.

To help the operatingsystem estimate the LRU pages, some
computers provide a reference bit or use bit, which is set whenever a

page is accessed.

The operating system periodically clears the reference bits and later
recordsthem so it can determine which pages were touched during

a particular time period.

With this usage information, the operating system can select a page
that isamongthe least recently referenced (detected by havingits
reference bit off).

What about writes?

* Because disk accesses are too slow, virtual memory
systems can not use write-through strategy.

* Instead, they must use write-back strategy. To do so,
the machines need add a dirty bit to the entry of page
table.

* The dirty bit is set when a page is first written. If the
dirty bit of a page is set, the page must be written
back to disk before being replaced.

Making Address Translation Fast----TLB

e Virtual Memory would not be very effective if every memory address had
to be translated by looking up the associated physical page in memory.
The solutionisto cache the recent translationsin a Translation Lookaside

Buffer (TLB)

Translation-Lookaside
Buffer (TLB): A cache
that keeps track of
recently used address
mappingstotry to
avoid an access to the
page table.

V Page Table
1

0001

1010

0010

0100

1010

1000

0011

Tag PhysPage

Layout in Physical Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

77

Virtual address

The TLB Contains a Subset of the 31 30 29 ceererrnnriiiiiiia, 14 13 12 11 10 Q-v-vvve-- 3210

Virtual page number Page offset

virtual-to-physical page mappings 20 1
that are |n the page ta ble Valid Dirty Tag Physical page number

TLB Cham

Because the TLB is a cache ,it O—

TLB hit ~Fe 6]

must have a tag field. If there is gE
no matching entry in the TLB for a — 2

page, the page table must be [[

Physical page number I Page offset

examined. Physical address

Physical address tag I Cache index

Block
offset

The page table either supplies a Jre C < T
physical page number for the
page (which can then be used to 8
build a TLB entry) or indicates that fad T2
the page resides on disk, in which cache
case a page fault occurs.

Since the page table has an entry !
for every virtual page, no tag field Cachehit{]‘J
is needed; in other words, unlike a

TLB, a page table is not a cache. %

Data

Byte
offset

12 Data

78

e Some typical values for a TLB

TLB size: 16—512 entries

Block size: 1-2 page table entries (typically 4-8 bytes each)
Hit time: 0.5-1 clock cycle

Miss penalty: 10—100 clock cycles

Miss rate: 0.01%—-1%

79

TLBs and caches

TLB miss
exception

Virtual address

TLB access

TLB hit?

No

Yes

Physical address

A

Cache miss stall
while read block

Try to read data
from cache

Yes

Deliver data
to the CPU

Write protection
exception

Try to write data

Cache miss stall
while read block

to cache

No / Yes
Cache hit?

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

80

Integrating caches, BLTs and memory

» Our virtual memory and cache systems work together as a hierarchy, so that
data cannot be in the cache unless it is present in main memory.

» The operating system helps maintain this hierarchy by flushing the contents
of any page from the cache when it decides to migrate that page to disk.

« At the same time, the OS modifies the page tables and TLB, so that an
attempt to access any data on the migrated page will generate a page fault.

Page
M Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.
Miss | Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.
Miss | Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.
Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit | Miss Miss | Impossible: cannat have a translation in TLB if page is not present in memoaory.
Hit | Miss Hit | Impossible: cannot have a translation in TLB if page is not present in memory.
Miss | Miss Hit | Impossible: data cannot be allowed in cache if the page is not in memory.

81

Implementing Protection with Virtual Memory

e To enable the operating system to implement protection in the virtual
memory system, the hardware must provide at least the three basic
capabilities:

* Indicating the current process is a user process or an OS process (or a
supervisor process, kernel process, an executive process)

* A portionofthe processorstate that users can read but not write
* Processor can go from user mode to supervisor mode and vice versa.

* Preventinga processfrom readingthe data of another process

* Placing the page tables in the protected address space of the OS, such that i)
one process cannot modify its own page table; ii) OS can modify the page
tables

* OSissupposedto help processesshareinformationinalimited way

Context switch or process switch

* A changing of the internal state of the processorto
allow a different process to use the processor that
includes saving the state needed to return to the
currently executing process

Handling TLB Misses and Page Faults

 ATLB miss can indicate one of two possibilities:

* The page is present in memory, and we need only create the missing
TLB entry.

* The page is not present in memory, and we need to transfer control to
the operatingsystem to deal with a page fault.

* When we process the TLB miss, we will look for a page table
entry to bring into the TLB. If the matched page table entry
has a valid bit that is turned off, then the corresponding page
is not in memory ,and we have a page fault, rather than just a
TLB miss.

* |f the valid bitis on, we can simply retrieve the desired entry.

* MIPS traditionally handles a TLB miss in software
* Bring inthe page table entry from memory
* Re-execute the instruction that causes the TLB miss, and get a hit
* |If the page table entry indicates the page is not in memory;, it results in a page
fault exception
 ATLB miss or page fault exception must be asserted by the end of the
same clock cycle thatthe memory access occurs

 When an exception first occurs, the processor sets a bitthat disables
all other exceptions and then save enough state for recovering

CPO register number

EPC 14 Where to restart after exception
Cause 13 Cause of exception
BadVAddr 8 Address that caused exception
Index 0 Location in TLB to be read or written
Random 1 Pseudorandom location in TLB
EntryLo 2 Physical page address and flags
EntryHi 10 Virtual page address
Context 4 Page table address and page number

85

* Once the operating system knows the virtual address
that caused the page fault, it must complete three steps:

1. Look up the page table entry using the virtual address and

find the location of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is
dirty, it must be written out to disk before we can bring a
new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the

chosen physical page.

* Page fault exceptions for data accesses are difficult to implement

properly in a processor because of a combination of three
characteristics:

1. Theyoccur inthe middle of instructions, unlike instruction
page faults.

2. Theinstruction cannot be completed before handlingthe
exception.

3. After handlingthe exception, the instruction must be
restarted as if nothing had occurred.

e Restartable instruction

* An instructionthat can resume execution after an exception

is resolved without the exception's affecting the result of the
instruction.

How does MIPS handle TLB miss?

* The page number of thereference is saved in register BadVAddrand an
exceptionis generated

* The exceptioninvokesthe operatingsystem, which handles the miss in software

e Controlistransferred to address 80000000, (the location of TLB handler)
* Find the physical address for the missing page and update the TLB

TLBmiss:
mfcO $kl1,Context # copy address of PTE into temp $kl
Tw $k1, 0($kl) 4 put PTE into temp $kl
mtcO $kl,EntryLo # put PTE into special register Entrylo
t1bwr # put EntrylLo into TLB entry at Random
eret # return from TLB miss exception

* The TLB miss handler does not check to see of the page table entryis valid

88

A Common Framework for Memory Hierarchies

* The key quantitative design parameters that
characterize the major elements of memory
hierarchy in a computer.

Feature for L1 caches for L2 caches paged memory foraTLB
Total size in blocks 250-2000 15,000-50,000 16,000-250,000 40-1024
Total size in kilobytes 16-64 500-4000 1,000,000-1,000,000,000 0.25-16
Block size in bytes 16-64 64-128 4000-64,000 4-32
Miss penalty in clocks 10-25 100-1000 10,000,000-100,000,000 10-1000
_Miss rates (global for L2) 2%-5% 0.1%-2% 0.00001%-0.0001% 0.01%-2%

89

Deep conceptin Cache

Caching is a general concept used in processors, operating systemes, file
systems, and applications.

Four Questions for Memory Hierarchy Designers

* Q1: Wherecan a block be placedin theupperlevel?
* Block placement: Fully Associative, Set Associative, Direct Mapped

* Q2: Howis a block foundifitisin the upperlevel?
* Block identification: Tag/Block

* Q3: Which block should be replaced on a miss?
* Block replacement:Random, LRU,FIFO

* Q4: What happenson a write?
* Write strategy: Write Back or Write Through (with Write Buffer)

90

Q1: Block Placement

Number of sets Blocks per set

Direct mapped Number of blocks in cache 1
Set associative | Number of blocks in the cache Associativity (typically 2-16)
Assaociativity
Fully associative 1 Number of blocks in the cache
15% - * Increasing associativity can

decrease miss rate

* As cachesizes grow, the relative
improvement from associativity
increases only slightly

* The potential disadvantages of
associativity are increased cost
and slower access time

12%

9% -

Miss rate

6% -

3% -
32 KB . 64KB = _128KB
e - ~d
O | | | 1
One-way Two-way Four-way Eight-way

Associativity
91

Q2: Block Identification

* Every block has an address tag that stores the main memory
address of the data stored in the block.

* When checking the cache, the processor will compare the
requested memory address to the cache tag -- if the two are
equal, then there is a cache hit and the data is present in the
cache

» Often, each cache block also has a valid bit that tells if the
contents of the cache block are valid

Location method Comparisons required

Direct mapped Index il
Set associative Index the set, search among elements Degree of associativity
Full Search all cache entries Size of the cache
Separate lookup table 0]

92

The Format of the Physical Address

* The Indexfield selects
* Theset, in case of a set-associative cache
* Theblock, in case of a direct-mapped cache

 Has as manybits as log2(# of sets) for set-associative caches, or log2(# of
blocks) for direct-mapped caches

 The Byte Offset field selects
* Thebyte withinthe block
* Has as many bitsas log2(size of block)

 The Tagis used to find the matchingblock within a set or in the cache

* Has as many bitsas
Address size—Index_size—Byte Offset Size

Block Address

Offset
Tag Index
. - Selects data within the
Stored in cache and used Selects set S

block

in comparison with CPPU address

93

Direct-mapped Cache Example (1-word Blocks)

LOAD R1, 0x04 TAG Index Byte Offset
31 4321 0
0000...000 01 | 00
MEMORY

Address Data
0x00 0x00000000

0x1C 0x55555555
0x20 0x10101010

0x04 0x12345678 Index Tag Data Valid Bit
0x08 0x87654321

0x0C 0x11111111 0 | o]

0x10 0x22222222] 0x0000000 0x12345678 1

0x14 0x33333333 2 0

0x18 0x44444444 3 0

: _.

94

Fully-Associative Cache example (1-word Blocks)

 Assume cache has 4 blocks

31 2 1 0
TAG |Bylel
Offset
_J
Block Tag Data Valid Bit
0
1
2
3 |

> é » HIT/MISS
v

bé ¥ >. P HIT/MISS
>© —> HIT/MISS

95

* The choice of full associativity for page placement and
the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very
expensive.

2. Full associativity allows software to use sophisticated
replacement schemes that are designed to reduce the
miss rate.

3. The full map can be easily indexed with no extra hardware
and no searching required.

2-Way Set-Associative Cache

 Assume cache has 4 blocks and each block 1s 1 word
* 2 blocks per set, hence 2 sets per cache

Index

31 32/10

Byte
TAG v IOffsel

Block Tag Data Valid Bit
0 Set0

1 |
% } Set 1

|
[

R . i B
‘ & e

97

Q3: Block Replacement

* In a direct-mapped cache, thereis onlyone block that can be

replaced
* |In set-associative and fully-associative caches, thereare N blocks

(where N is the degree of associativity)

Block 1 2 3 45 & 1 01 ¥ 3 4 5 & 7
Number
Fully- 2-way Sel-
associativ associative
Cache Cache
Set Sel Set Set
0 1 Z 3
Block . ; , ; .
NUTnb(H LN IS D R S B B DR DR DR A S S S - - A A 2 A
LI | 2 3 4 5 & T 1 %= o0 1 i ¥ 4 5 & 7 B 9 LU | I 3 4 5 65 7T B % 0
Memory

98

Strategy of block Replacement

» Several different replacement policiescan be used
* Random replacement - randomly pick any block
 Easy to implement in hardware, just requires a random
number generator
e Spreads allocation uniformly across cache
* May evict a block that is about to be accessed
* Least-recently used (LRU) - pick the block in the set which was
least recently accessed
 Assumed more recently accessed blocks more likely to be
referenced again
* This requires extra bits in the cache to keep track of
accesses.
e First in,first out(FIFO)-Choose a block from the set which was
first came into the cache

Q4: Write Strategy

* When datais written into the cache (on a store), is the data also written to main
memory?

* If the datais written to memory, the cache is called a write-through cache
e Canalwaysdiscard cached data - most up-to-date dataisin memory
* Cache control bit:onlya valid bit

 memory (or other processors) always have latest data
* If the datais NOT written to memory, the cache is called a write-back cache

e Can’tjustdiscard cached data - may have to write it back to memory

e Cache control bits:both validand dirty bits
 much lower bandwidth, since data often overwritten multiple times
* Write-through pro: Read misses don't resultin writes, memory hierarchyis
consistentanditis simpletoimplement.
* Write back pro: Writes occur at speed of cache and main memory bandwidth is
smaller when multiple writes occur to the same block.

* The key advantages of write-back

* Individual words can be written by the processor at the rate
that the cache rather than the memory, can accept them

* Multiple writes within a block require only one write to the
lower level in the hierarchy

* When blocks are written back, the system can make
effective use of a high-bandwidth transfer, since the entire
block is written

* The key advantages of write-through

* Misses are simpler and cheaper because they never
require a block to be written back the lower level

* Write-through is easier to implement than write-back,
although to be practical, a write-through cache will
still need to use a write buffer

The Three Cs: An Intuitive Model for Understanding the
Behavior of Memory Hierarchies

e Compulsory misses:
* These are cache misses caused by the first access to a block that has never been in
the cache. These are also called cold-start misses.

* Capacity misses
* These are cache misses caused when the cache cannot contain all the blocks
needed during execution of a program. Capacity misses occur when blocks are
replaced and then later retrieved.

* Conflict misses

* These are cache misses that occur in set-associative or direct-mapped caches when
multiple blocks compete for the same set. Conflict misses are those misses in a
direct-mapped or set-associative cache that are eliminated in a fully associative
cache of the same size. These cache misses are also called collision misses.

Possible negative
Design change Effect on miss rate performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity | Decreases miss rate due to conflict May increase access time
misses

Increase block size Decreases miss rate for a wide range of Increases miss penalty. Very large
block sizes due to spatial locality block could increase miss rate

103

g9
% S
v»bé’

NG uNY

The miss rate can be broken into three sources of misses.

Miss rate .,
per type

Four-way

Capacity
1% -

OO/Q 1] 1 I I L 4] 1
4 8 16 32 64 128 256 512 1024

Cache size (KB)

104

Using a finite-state machine to control a
simple cache

* A simple cache model
* Direct-mapped cache
Write-back
Block size is 4 words
Cache size is 16 KiB (so it holds 1024 blocks)
32-byte address
The cache includes a valid bit and dirty bit per block

e Cache address
 Cacheindexis 10 bits
* Block offset is 4 bits
* Tag size is 18 bits

* The signals between the processor and the cache

* 1-bit Read or Write signal

1-bit Valid signal, saying whether there is a cache operation
or not

32-bit address
32-bit data from processor to cache

32-bit data from cache to processor

1-bit Ready signal, saying the cache operationis complete

* The signals between the memory and the cache
* 1-bit Read or Write signal

1-bit Valid signal, saying whether there is a memory
operation or not

32-bit address
128-bit data from processor to cache

128-bit data from cache to processor

1-bit Ready signal, saying the memory operationis complete

Finite-state machines (FSM)

A finite-state machine consists of a set of states and directions on how to
change the states

* The directions are defined by a next-state function, which maps the current
stateand the inputsto a new state

* Each state specifies a set of asserted outputs

* The implementation of a finite-state machine usually assumes that all output
thatare not explicitly asserted are deasserted

Next state
Next-state
O .
function
O
Input Output N
> function Output

108

* A finite-state machine is implemented with
» a temporary register (that holds the current state)

* a block of combinationallogic (that determines both the
data-path signals to be asserted and the next state)

Combinational

control logic Datapath control outputs

Outputs <

Inputs

A .
r N\

T

Inputs from cache State register

datapath t 1 T

109

Four states of the simple controller

Cache Hit

Mark Cache Road Compare Tag

ark L-ache Heady f If Valid && Hit,
- » Set Valid, SetTag,
Valid CPU request if Write Set Dirty

Cache Cache
Miss Miss

and and

Old Block Old Block

is Clean is Dirty

Write-Back

Write Old
Block to

Allocate

Read new block
from Memory

Memory Ready

110

Cache Hit

* |dle: waiting for a valid

Idle etk Cache Road Compare Tag
ark Cache Ready f) .
If Valid && Hit , H
-\ et Valid, SetTag, read or write request
Valid CPU request if Write Set Dirty

from the processor

Cache
Miss Miss
and and
Old Block Old Block
is Clean is Dirty

Write-Back

Write Old
Block to
Memory

Allocate

Read new block
from Memory

Memory Ready

111

Idle CHche I (mpare Tag

J If Valid && Hit ,

- = Set Valid, SetTag,
Valid CPU request if Write Set Dirty

Mark Cache Ready

Cache
Miss

and

Old Block
is Clean

Allocate

Read new block
from Memory

Write-Back
Memory Ready Write OId

Block to

Cache
Miss

and

Old Block

is Dirty

* CompareTag

Check if the request read or write is
a hit or a miss

If a hit, either the data is read from
the selected word or written to the
selected word

Set the Cache Ready signal

If it is a write, set the dirty bit

A write hit also sets the valid bit and
the tag field in memory

If it is a hit and the block is valid, the
FSM returns to the idle state

A miss first updates the cache tag
and then goes either to the Write-
Back state (if the block at this
location has dirty bit value of 1), or
to the Allocation state (if it is 0)

112

Mark Cache Ready

Valid CPU request

Cache
Miss

and

Old Block
is Clean

w
Memory Ready

Read new block
from Memory

Compare Tag

(If Valid && Hit ,
» Set Valid, SetTag,
if Write Set Dirty

rite-Back

Write Old
Block to
Memory

Cache
Miss

and

Old Block

is Dirty

Y

 Write-Back

* Writingthe 128-bit block to
memory

e Stayingin thisstateand
waiting for the Ready signal
from memory

* Whenthe memory write is
completed, the FSM goes into
Allocate state

113

Cache Hit

e Allocate

Idle etk Cache Road Compare Tag
arik Lache Heady f If Valid && Hit, .
: -\ Set Valid, SetTag, * Fetchinga new block from
Valid CPU request if Write Set Dirty

memory

* Goingintothestate of
Compare Tag when the
Miss iss memory read is completed.

and and
Old Block Old Block
is Clean is Dirty

Y

Write-Back
Memory Ready Wiite OId

Block to
Memory

Allocate

Read new block
from Memory

114

Parallelism and Memory Hierarchy: Cache Coherenég

* A multicore multiprocessor means multiple processors
on a single chip

* These processors share the same physical address space

* Each processor interacts with memory through their
individual caches

Memory

contents for
ion X

Time Cache contents for | Cache contents
step CPUA for CPUB locat
0

1 CPU Areads X
2 CPU B reads X 0 0
3 CPU A stores 1 into X 1 0

O] O] O

115

A memory system is coherent if

1. Aread by aprocessor P to alocation X that follows a
write by P to X, with no writes of X by another
processor occurring between the write and the read
by P, always returns the value written by P.

2. Aread by aprocessor to location X that follows a write
by another processor to X returns the written value if
the read and write are sufficiently separated in time
and no other writes to X occur between the two
accesses.

3. Writes to the same location are serialized; that is, two
writes to the same location by any two processors are
seen in the same order by all processors.

Basic Schemes for Enforcing Coherence

* Migration

* A dataitem can be moved to alocal cache and used there in
a transparent fashion. Migration reduces both the latency to
access a shared data item that is allocated remotely and the
bandwidth demand on the shared memory.

* Replication
* When shared data are being simultaneously read, the

caches make a copy of the data item in the local cache.

Replication reduces both latency of access and contention
for a read shared data item.

Cache coherence protocol

* Snooping protocol

 Every cache that has a copy of the data from a block of
physical memory also has a copy of the sharing status of the
block, but no centralized state is kept. The caches are all
accessible via some broadcast medium (a bus or network),
and all cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that is
requested on a bus or switch access.

* One method of enforcing coherence is to ensure that a

processor has exclusive access to a data item before it writes
that item.

* This style of protocol is called a write invalidate protocol
becauseit invalidatescopies in other caches on a write.

* Exclusive access ensures that no other readable or writable
copies of an item exist when the write occurs: all other
cached copies of the item are invalidated.

Thanks |

