Computer Organization and Design
The Hardware/Software Interface

Chapter4 - Processor

Instructor: Dr. Feng Li

Chapter Four: The processor

* 4.1 Introduction

* 4.2 Logic Design Conventions

* 4.3 Buildinga datapath

* 4.4 A Simple Implementation Scheme

* 4.5 An Overview of Pipelining

* 4.6 Pipelined Datapath and Control

e 4.7 Data Hazards: Forwarding versus Stalling

* 4.8 Control Hazards

* 4.9 Exceptions

* 4,10 Parallelism and Advanced Instruction-Level Parallelism

Introduction

 We'll look at an implementation of the MIPS

 Simplified to contain only:
* memory-reference instructions: Iw, sw
 arithmetic-logical instructions: add, sub, and, or, slt
 control flow instructions: beq, |

* An Overview of the implementation

* For every instruction, the first two step are identical
* Fetch theinstruction from the memory
* Decode and read the registers
* Next steps depend on the instruction class
* Memory-reference instructions, Arithmetic-logical instructions, branch instructions

An abstract view of the implementation of MIPS

4 —» —
zdd gdd
-]

L A
Data

—~ Register #

-1 PC [Address Instruction -O—L Registers Address
Register # Data
Instruction memory —
memory L Register # ‘
» Data

Branch

PC

Cx:g
A

A

Add _|Add M)
. - u =
X |
. Fors
ALU operation
Data
o> Register #
®= Address Instruction e Registers >ALU >
¢>| Register # M
Instruction u
memory ¢~ Register # oqyrite X

I

Zero

A

MemWrite

Address

Data

Data
memory

MemRead

=

|
—>l Control |

_/

Logic Design Conventions

* Datapath elements consist of two types of logic elements
 Combinational elementsthat operates on datavalues
 State elements: elementsthat contain state

* The outputs of combinational elements depend only on the
current input

 State elements have some internal storage, and the state can
be maintained even when computers have no power
e Two inputs: data value and clock
* One output:thevalue that was writtenin an earlier clock cycle
* E.g., D-type flip-flop, memories, registers

State Elements

*Clocks used in synchronous logic

>»when should an element that contains state

/falling edge
) cycle time " \

rising edge

be updated?

Clocking methodology

* Clocking methodology defines when signals can be read and
when they can be written

* An edge-triggered clocking methodology
* Anyvaluesstoredina sequential logicelement are updated onlyona
clock edge, which is a quick transitionfrom low to high or vice versa
* Typical execution:
* read contents of some state elements,

* send values through some combinational logic
e write results to one or more state elements

State A State All signals must propagate from state
element ombinational logic element . .
1) 2 element 1, through the combinational

logic, and to state element 2 in the time
of one clock cycle.

Clock cycle —

* If a state element is not updated on every clock, then an explicit
write control signal is required.

* Asserted: a signal is logically high
» Deasserted: a signal is logically low

* An edge-triggered methodology allows a state element to be read
and written in the same clock cycle without creating a race that could
lead to indeterminate data values

State

Combinational logic
element

10

Building a datapath

e Datapath element

* A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, the ALU and adders

Instruction
address -
Instruction —» —>{PC+—— Add Sum
Instruction —
memory
a. Instruction memory b. Program counter c. Adder

FIGURE 4.5 Two state elements are needed to store and access Instructions, and an
adder Is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.

Instruction fetching unit

Read
address

Instruction ———

Instruction
memory

PC

A

Address

Instruction
memory

Instruction

Data
Register #
Registers

Register #

Register #

Address

Data
memory

»| Data

R-type (or arithmetic-logical) instructions

* Read two registers, perform an ALU operation on the contents
of the registers, and write the result to a register

Register {
numbers

\

Data {

a. Registers

2 | Read
register 1 Read
5 | Read data 1
: register 2
5 | Write Registers
: ist
register Read
Write data 2
Data
RegWrite

> Data

.| ALU operation

result

b. ALU

Memory-reference instructions

* lw Stl, offset_value (St2)
* sw St1, offset_value (5t2)

‘ MemWrite
» Address Read e
data
Data
Write ~ Memory
———
data
MemRead

a. Data memory unit

Sign-
extend

b. Sign extension unit

Branch instruction

* beq instruction

* Three operands: two registers that are compared for equality, and a 16-bit offset
used to compute the branch target address relative to the branch instruction
address

* The base for branch address calculation is PC+4

* The offset is based on word rather than byte, so the offset field should be shifted
left 2 bits

* Compare the register contentsto determine if the branch is taken
or not

 Compute the branch target address

PC+4 from instruction datapath —

Branch
Add Sum target
.
Regd ALU operation
Instruction register 1 Read ‘ \

Read data 1
register 2 To branch

i ALU Zero .
Write Registers control logic
register Read
Write data 2
data

RegWrite
16 Sign- 32

" | extend

Implement the R-type instruction

R-1nstruction format:
op(6) shamt [func(6)

\ /

Read /TS
register 1

dRea1cI _'\)
Réad 1t ata B negate | op | function

_ _ Zero—»
Y ter 2
nstruction eg.|s eT?egisters A'—U ALU 0 00 and
Write d result p=——t
register! Read 0 01 Or
. data 2 "
— | dhta N / 0 |10| Add
1 10 Sub
1 11 Slt

Implement the | type instruction

op(6) ([rs(5) |rt(5) |Immediate data

bit21-25 Read TS 3] ALU operation
register 1 Read MemWrite
 ————
Read data 1
Instruction register 2 Zerob—»
. Registers >A|—U ALU
. Write ¢ result -»| Address F‘(;Z?g e
bit 16]-20 | register Read| e
Write data 2
memo
RegWrite| .| Write i
m | data
. 16 32
bit0-15 \ .| Sign MemRead
N | extend
32bits data

lw $t0, 200($s2)
if $s2=1000, i1t will load word in element number 1200 to $t0

Implementation of beq

op(6)
PC + 4 from instruction datapath ===
to PC
>Add Sum) targe
| Read
Instruction register 1 Read .
Read data 1
register 2
Registers 5ALU Zero To branch.
Write control logic
register Read ‘
Write data 2]
data
16 _ 32
\ [Sign

N “lextend

Combine the implementation R-type and I-type

$Add

4 w—p
| Read Registers ;
Read register 1 AN
PG> . Read
address o
Instruction register 2 . I e
,| Write Read) AL ' Address——Raad,
regigter data 2 M resul data M
Instruction Woite l)J(¥
memory =t ata — Data U
l \/ o I Write memory >
| data
) o |
| extend

21

Building the Datapath

* Use multiplexors to stitch them together

M} |

A
oxcZ =~

ALU
4 -/ >Add result
r
Instruction [25—21] | Read
Read register 1 Read
> PC address Instruction [20— 16] _|Read data 1 >
Instruction _I L register 2 Zero
1 . Read
131-0] M Write data 2 ! > ALU re'g\bll’iJ Address Readl(4
, U register M data M
Instruction Instruction [15- 111 [x | | write u y
memory ¢ * 0] Plgata Registers | R)6 X
Write Data 0
> data memory
Instruction [15—0] 1\6 Sign \ 32

T\ extend
Instruction [5— 0] r

Note : control signals e.g. add $s0, $s1,$s2/ addi $s0,$s1,100

A simple implementation scheme

e Data path + control function

* |nstructions
* [w, sw
* beq
* add, sub, and, or, set on less than
°)

ALU control

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU needs to perform one of
these first five functions

24

* We need a small control unit

* Input: the function field of the instruction and a 2-bit control

field (i.e., ALUOp)

* Quput: 4-bit ALU control signal

* ALUOp indicates the operations that the ALU will perform

* Addition (00) for load and store instructions
e Subtraction (01) for beqg

e Operations encoded in the funct field (10)

Control

Analyze for cause and effect

* Information comes from the 32 bits of the instruction

* Selecting the operations to perform (ALU, read/write, etc.)
e Controllingthe flow of data (multiplexorinputs)

* ALU's operation based oninstruction type and function code

R format instruction
26 25 21 16 15

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

|-format instruction
21 20 0

I B B B

5 bits i 16 bits

J-format instruction
31 26 25

26 bits

Scheme of Controller

e 2-level decoder

op(6) [rs(5) [rt(5) |[rd(5) |shamt |func(6)

ALU operation
ALU (3 bits)
ﬁ
ALU o Decoder
2 bits) | Second
First
. . Main
instruction op code
decoder

(6 bits)

Signals for Other
| Components (7 bits)

Designing the Main Control Unit (First level)

e Main Control Unit function
* ALU op (2)

* Divided 7 control signalsinto 2 groups

e 4 Mux
* 3R/W

—» ALUop (2)
Instruction op

code (6) - — Mux (4)
— " R/W(3)

Designing the ALU decoder (Second level)

* How the ALU control bits are set depends on the ALUOp control
bits and the different function codes for the R-type instructions

Instruction ALUOp Instruction Funct Desired ALU control
opcode operation field ALU action

Iw 00 Load word xXXxxxx | add 0010
sw 00 Store word xxxxxx | add 0010
beq 01 branch equal XXxxxx | subtract 0110
R-type 10 add 100000 | add 0010
R-type 10 subtract 100010 | subtract 0110
R-type 10 AND 100100 | AND 0000
R-type 10 OR 100101 | OR 0001
R-type 10 Seton less 101010 | Seton less than 0111

than

29

Truth Table for ALU decoder

* Describe it using a truth table (can turn into gates):

ALUOp Funct field Operation
ALUOp1|ALUOpPO|F5|F4|F3|F2(F1|F0| 270
0 0 X[x| x]x[o010
X 1 x| x\x[x[x]x[110
/4 X [x[x]olololo[o010
/q X [x]xJolo[1]0o] 110
don’t[care 1 X |[x[xJo[1]o]o oo00
1 X \x x/{o[1]o[1] o001
1 X [\X[x¥[1]ol1]o] 111

NS

Operation2 = ALUspo+ ALUopt(F3F2F1F o+ F3F2F1Fo)

Operation = ALUsp F3F2F1Fo+ ALUsn F3F2F1Fo
Operationo = ALUyp F3F2F1Fo+ ALU, F3F2F1Fo

Designing the main control unit

* |dentify the fields of an instruction

* Identify the control lines that are needed for the datapath

Main observations

e Opcode (bits 31:26)

» Registers rs (bits 25:21) and rt (bits 20:16) to be read
* Base register rs (bits 25:21) for load/store instructions
 Offset for branch equal, load, and store (bits 15:0)

* Destination register: rt (bits 20:16) for load instruction, rd
(bits 15:11) for R-type instruction

Field 0 rs rt rd shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
a. R-type instruction

Field 350r43 rs rt address
Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction

Field 4 rs rt address
Bit positions 31:26 25:21 20:16 15:0
c. Branch instruction

PC

Y

Add

NS

\ |

Y

Read
address

Instruction
[31:0]

Instruction
memory

Instruction [25:21]

Instruction [20:16]

1

|-

@

Instruction [15:11]
RegDst

Instruction [15:0]

-“xc=0

Instruction [5:0]

ALU
>Addresult
RegWrite >
_ | Read
" | register 1 g
Read data1 >~
> register 2 ALUSre
Write Read
register data2 [T
.| Write
data Registers

MemWrite

Read
Address data

Data

Write memor
data y

i)

ALUOp

MemtoReg

MemRead

33

The effect of each of the seven control signals

Signal name Effect when deasserted(=0) Effect when asserted(=1)
The register destination number The register destination number for the
RegDst for the Write register comes from Write register comes from the rd field
the rt field (bit 20:16) (bit 15:11)
ReqWrit None Register destination input is written
egvirte with the value on the Write data input
The second ALU operand come The second ALU operand is the sign-
ALUScr from the second registerfile output | extended lower 16 bits of the
(Read data 2) instruction..
The PC is replaced by the output of | The PC is replaced by the output of the
PCSrc the adder that calculates the value | adderthat calculates the branch target.
PC+4
None Data memory contents designated by
MemRead the address input are put on the Read
data output.
None Data memory contents designated by
MemWrite the address input are replaced by value
on the Write data input.
MemtoReg The value fed to register Write data | The value fed to the register Write data
input comes fromthe ALU input comes from the data memory.

xcZ ©

A

ALU
>Add result

N

NV

Add
4 —

Instruction [31- 26]
Control
Instruction [25—-21] Read
Read register 1
PC | address ° Read
Instruction [20— 16] Read data 1
: register 2
'nStEtalﬁt_'Og] l—» 0 ~ Registers Read >A|-U ALU
. M Write data 2 0 result Address Read|
Instruction u register M data M
memory Instruction [15— 11] X Write ; Y
1 O) Data X
memo
Write v 0
data
Instruction [15-0] 1\6 Sign ?(2

N lextend [N ALU
rcontrol

Truth Table for Main decoder | Lrstuctionis-o

Memto- | Reg | Mem | Mem
Instruction | RegDst [ALUSrc Req | Write [Read | Write | Branch | ALUOp1 [ALUpO

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1 P

Circuitry of main Controller

e Simple combinational logic (truth tables)

Inputs opcode | output
Op5
Op4 000000 | R-format
Op3
op2 100011 | Iw
Op1
OpO . ’ 101011 | sw
ooooos 000 olo 000 08
[’kJ LJ [j 000100 | beq
Outputs
R-format Iw sw beq RegDst
) ALUSTc
MemtoReg
) RegWrite
MemRead
MemWrite
Branch
ALUOp1

ALUOpO

Our Simple Control Structure

* All of thelogicis combinational

* We wait for everythingto settle down, and the right thing to be done
* ALU might not produceright answer? right away

e we use write signalsalong with clock to determine when to write

* Cycle time determined by length of the longest path

State
element
2

State
element
1

Combinational logic

Instruction n Instruction n+1

a a

Clock cycle —

We are ignoring some details like setup and hold times

Fhe simple Datapath with the control unit

Instruction [25-0 . o T—08 0) L1
nstruction [] Shift jump address[31-0] M M
left 2 \
Add ALU Ul- | U
26 28 [PC+4[31-28] result X X
Add | 1 5] O
4— - |
Branch Jump
MemRead
Instructior] [31-26] MemtoRead
Control | _ALUOp
Read MemWrite
> -O—»
pC address ALUSrc
RegWrite
Instruction
) Inktruction [25-21] [Read
[31-0] Plregister 1 ,\
Read R
Instruction ‘ data 1 g
memory dnsfruction [20-16] ||Read Zero
register 2 ALU 1
—o—>(A
ALU ddressRead IR
Write Read >/ 0 result data u
register data 2 g o ())(
. Data >
R_type [__|Write X
Ins data Registers 1 V\r]r;ir;lory
Op|rs|rt|rd |shamt|Funct R
» data
I-type , 16 32
- Instruction [15-0 Sign \ ALU
Op|rs|rt| Immediate extend N control
Jump-type
Instruction [5-0
Op address nstruction [5-0]

0 1
o M M
U U
X | X
Add o 1 0
4——
jump
\ MemRead
Instruction [31-26] MemtoRead
Control [ALUO
Read MemWrite
O—p
pC address ALUSrc
RegWrite
Instruction
- Inftruction [25-21] Read
[31-0] K
register Read
[nstruction ‘ data 1
memory Ans ruction [20-16] ,|Read
register 2 :
M
Write thzag U
. a
add sub and or slt register R ())(

R-type

'he Datapath in operation for R-type

Op

rs

rt

rd |shamt|Funct

Ins

‘Write

data Registers

JV,

Instruction [5-0]

39

Fhe Datapath in operation for lw

0 1
° M M
U U [—
X | X
Add o 1 0
4—)
jump
\ MemRead
Instruction [31-26] MemtoRead
Control L ALUOD
Read MemWrite
> LO—> ‘
p C address ALUSrc
RegWrite
Instruction
- Inftruction [25-21] Read
[31-0] M coistor 1
register Read
Instruction data 1
memory J
‘ 1
Address
1(3/1 Read | M
U Write ° data U
1 d . . register X
oad 1nstruction X ' egiste 2
Q 1 'Write Data
B memor
data Registers y

I-type

[nstruction [15-O|

Sign

Immediate

extend

40

pc

Fhe Datapath in operation for sw

store instruction

I-type

rs

Immediate

Instruction [15-0

Registers

16)
Sign
extend

0 1
o M M
U U
X _L X
Add o 1 0
4 RegDst '
Branch Jump
MemRead
Instruction [31-26] MemtoRead
Control L ALUOD
Read MemWrite
address ALUSrc
RegWrite
Instruction
- Instruction [25-21] Read
[31-0] o
register Read
[nstruction . data 1
memory 'Instruc‘u'on [20-16] ;Rea‘d
register 2
Address
—>

Data
memory
Write

data

41

Fhe Datapath in operation for beq

Add

beq instruction

I-type

Instruction [31-26]

Immediate

— % azgo

jump

oxag—
|

Add ALU
result
RegDst B
Branch
MemRead
MemtoRead

Control L ALUOD
Read MemWrite
> HFO—p
PC address ALUSrc
RegWrite
Instruction
[31-0] "‘I Instruction [25-21] | Read
"[register 1 Read
Instruction _ data 1
memory 'InSthU'OU [20-16] |Read

Instruction [15-0

Iregister 2

Read
data 2

!

7

Registers

16

Sign
extend

—xago

Data
memory

42

J Instruction

e instruction format

*j Label

(000010)2 |26 bits address

* Implementation
* The upper 4 bits of the current PC+4

* The 26-bit immediate field of the jump instruction
* The bits 00,

pc

Instruction [25-0]

26
4——
Instructior] [31-26]
Read
address
Instruction

[31-0]

Instruction

memory

jump instruction

Jump-type

Op

address

Fhe Datapath in operation for |

Shift jump address[31-0]

left 2 \
28 |PC+4[31-28]

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

Sxag—
|

jump

44

Single Vs. Multi-Cycle Machine

* In this implementation, every instruction requires one
cycle to complete = cycle time = time taken for the
slowest instruction

e If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Load < > Load <

Add < > Add <

Beq

Beq

Single Cycle Problems

* what if we had a more complicated instruction like
floating point?
* If so, the waste of time will be more serious.
*The reason is the following:

* Let’s see the instruction ‘mult’
* This instruction needs to use the ALU repeatedly.

An Overview of Pipelining

* Pipelining is an implementation technique in which
multiple instructions are overlapped in execution

47

The laundry analogy for pipelining

* Place one dirty load of clothes in the washer

* When the washer 1s finished, place the wet load in the dryer

 When the dryer is finished, place the dry load on a table and
fold

* When folding 1s finished, ask your roommate to put the
clothes away

Time __ 6PM 7 8 9 10 11 12 1
g = j 0 I

Task

order
» o=l
B —
) EE
D

48

Pipelining paradox

The time cost for handling a single dirty load is not shorter for
pipelining

The pipelining for many loads is faster, since everything is
working 1n parallel, such that more loads are finished per hour

6 PM 7 8 9 10 1 12 1 2AM

Time
- e——]] |
Co

Task
order

A . O
s

C

D

49

An Overview of Pipelining

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined

50

Applying pipelining to processors

A MIPS instruction takes five steps

IF (Instruction Fetch): Fetch instruction from memory
ID (Instruction Decoding): Read registers while decoding the instruction
EX (ALU Execution): Execute the operation or calculate an address
MEM (Memory Access): Access an operand in data memory
WB (Write Back to Register): Write the result into a register

Instruction | Register ALU Data | Register | Total
Instruction class fetch read operation | access write time

Y VYV VY

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no

delay.

Single-cycle, nonpipelined execution versus pipelined execution

Program
execution Time 200 400 6(|)O 8(|)0 10|OO 12100 14100 16100 18]00
order | |
(in instructions)
Iw $1, 100($0) """ Reg| ALU Dt | Reg
Iw $2, 200($0) 800 ps [Meton " |Res| AU | oees | Reo
Iw $3, 300($0) 800 ps [Insinaction
800 ps
Program
execution . 200 400 600 800 1000 1200 1400
Time 1 1 1 1 1 1 1 -
order
(in instructions)
w $1,100(30) " [Rea| AU | D33 |Reg
lw $2, 200(30) 200 ps Insft;t::rtlion ey | ALY agoa;:s Reg
W $3,30080) 200ps err| |es| Av | 222, e

200 ps 200ps 200ps 200 ps 200 ps

A 5-Stage Pipeline

add $s0, $t0, $t1 | IF = 1D

Time

200 400

SEX

IF: Instruction Fetch

ID: Instruction Decoding
EX: ALU Execution
MEM: memory access
WB: Write Back to Reg

600

MEM

800
|

What would happen if we increased the number of instructions?

Fro example, 1 000 003 instructions.

Total execution time ;,ejineq = 200 001 400 ps

Total execution time,,,ineiinea= 800 002 400 ps

800 002 400 ps _
200 001 400 ps

Pipelining improves performance by increasing instruction
throughput, as opposed to decreasing the execution time of an
individual instruction.

Designing instruction sets for pipelining

All MIPS 1nstructions are the same length

MIPS has only a few instruction formats, with the source register
fields being located in the same place in each instruction
Memory operands only appear in loads or stores in MIPS

Operands must be aligned in memory

Pipeline hazards

 Hazards: The next instruction cannot execute in the

following clock cycle

» Structural hazard
> Data hazard

» Control hazard

Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

 Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

Structure hazard

When a planned instruction cannot execute in the proper
clock cycle because the hardware does not support the
combination of instructions that are set to execute

Tine __8PM 7 8 9 10 11 12 1 2AM
Qs | | | | |
o
Task
order
A . O %. We use a washer-dryer combination
B . . instead of a separate washer and

dryer
c S Y
0 EE

Data hazard

When a planned instruction cannot execute in the proper
clock cycle because data that is needed to execute the
instruction 1s not yet available

Example: add $s0, $t0, $t1
sub $t2, $s0, $t3

Solution: We do not have to wait for the instruction to
complete before trying to resolve the data hazard. E.g., as
soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract.

Forwarding (or bypassing):
A method of resolving a data hazard by retrieving the missing
data element from internal buffers rather than waiting for it to

arrive from programmer-visible registers or memory

. 200 400 600 800 1000
T|me T T T I I .
add $s0, $t0, $t1 | IF —= 1D SEXI——MEM WE |
 [F: Instruction Fetch « MEM: memory access

 ID: Instruction Decoding « WB: Write Back to Register
« EX: ALU Execution

60

Program

execution 200 400 800 1000
order Time 1 1 1 1 -
(in instructions) ~ .
add $s0, $10, $t1 IF ——= ID MEM WB |
‘\\
- \ —— 1
sub $t2, $s0, $t3 IF ———= ID MEM WB |

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register

$50 read in the second stage of sub.

61

Data Hazards

(in instructions)

lw $2, 20($1)

and $4, 52, $5

or $8, 52, $6

add $9, $4, $2

- slt $1, $6, $7

(-
—E:Reg

(-
—DIReg

-1
ﬁrEegl

-1
o] e

I:DM

(—
—Reg

—1
Ls

DM

Bypassing

Time (in clock cycles) -
CC1 CC?2 CC3 CC4 CC5 CCH CC7 cCcs CC9

Value of register $2: 10 10 10 10 10/~20 -20 —20 -20 =20
Value of EX/MEM: X X X -20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
Program
execution
order
{in instructions)

and $12, ©7, $5 eg

or $13, $6,

add $14,

sw $15, 100

* Some data hazard stalls can be eliminated: bypassing ..

Load-use data hazard

A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it 1s needed
by another instruction

Solution: Pipeline stall (also called “bubble™)

Program

execution

order Time
(in instructions)

lw $s0, 20($t1)

sub $t2, $s0, $t3

200 400 600 800 1000 1200 1400
IF - 1D %—MEM—Q- wB

e Ve Ve \ Ve Vel
(_bubbley (_bubble/ (_bubble/\ (bubble/ (bubble,/
“ e) T _~ T ~ / \ T A) e e

\ASA_/) »T A/

‘_7 » ye]:, A/ “y

IF —= ID :g—MEM WB |

W A AL

64

Example - bubble

(in instructions)

w $2, 20($1) IM ~|:|-z'L§e§[:

and becomes nop IM —
and $4, $2, $5
|
Re
or $8, 52, $6 —fieg
| add $9, 54, 52 pMH |-HReg
— 1

A bubble 1s inserted beginning in clock cycle 4, by changing the
and 1nstruction to a nop.

65

Load-use data hazard

A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it 1s needed
by another instruction

Solution: Pipeline stall (also called “bubble™)

Program

execution

order Time
(in instructions)

lw $s0, 20($t1)

sub $t2, $s0, $t3

200 400 600 800 1000 1200 1400
IF - 1D %—MEM—Q- wB

e Ve Ve \ Ve Vel
(_bubbley (_bubble/ (_bubble/\ (bubble/ (bubble,/
“ e) T _~ T ~ / \ T A) e e

\ASA_/) »T A/

‘_7 » ye]:, A/ “y

IF —= ID :g—MEM WB |

W A AL

66

a=b+ c, Assume that all variables are in memory
c=Db+ f; and are addressable as offsets from $t0

Tw $t1, 0($t0) Tw $tl, 0($t0)
Tw $t2, 4($t0) lw $t2, 4($t0)
add $t3, $tl1,$t2 lw $t4, 8($t0)
sw $t3, 12($to) ™=y 3dd $t3, $tl,$t2
Tw $t4, 8($t0) sw $t3, 12($t0)
add $t5, $tl1,$t4 add $t5, $tl1,$t4d

Sw $tH, 16(3$t0) Sw $th, 16(3$t0)

67

Control hazard

When a proper instruction cannot execute in the proper pipeline clock cycle
because the instruction that was fetched is not the one that is needed; that 1s the
flow of instruction addresses i1s not what the pipeline expected

Program

exgcution Time 20|0 4(|)0 60|0 8(|)0 1 0100 1 2|00 1 4|00 _
?i:\ ier}\rstructions)

add $4, $5, $6 '"S::t’gm" Reg| ALU ag:;zs Reg

beq $1, $2, 40 m'"ﬂ'&fﬁbn Reg| ALU | D% |Reg

/\/\ lad \\/\/ \,\(w/\\r, //\
\bubblew(bubble/\ bubble/\bubble/kbubble

\; FOWAWeN / (O/ [\ FOWAN FON /
or $7, $8, $9 Instruction Data
\ 400 ps fetch Reg| ALU access |19

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control
hazards. This example assumes the conditional branch is taken, and the instruction at the destination of
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. The effect on performance,

however, is the same as would occur if a bubble were inserted.
0%

* Branch prediction
» A method of resolving a branch hazard that assumes a given outcome
for the branch and proceeds from that assumption rather than waiting to

ascertain the actual outcome

Program

execution Time 200 400 600 800 1000 1200 1400 -

(()in'dier;tructions)

add $4, 85,86 || |Reg| Aw | Do IReg

beq $1, $2, 40 m'ﬂﬁggm Reg| ALU | D& peg

w $3, 300(30) 200ps| feen | |Pe9| AV | soiess |Reo

'

Program

execuion 1, 200 400 60 B0 1000 1200 1400

(()in'dienstructions)

add$4,$5 96 |™acn’"| |Res| A | ooe | Reg

beq $1, $2, 40] m'"ﬁ;’g"" Rog| AU | D22 Ipeg
(ﬁugble”gubde\(b&bl\exbubbl\er(t;l]/bbl\e)
o/ e/ o/ o/ Lo/

~or $7, $8, $9 - 400 ps -Insft:cc:‘lon Reg | ALU alg:et:s Reg

70

Control hazard

* A more sophisticated version of branch predictor
» Predict some branches as taken, while some as untaken
» E.g., loops in a program
* Dynamic hardware predictor
» Keeping a history for each branch for taken or untaken, and then using the
recent past behavior to predict the future
» When the guess is wrong, the pipeline control must ensure that the

instruction following the wrongly guessed branch have no effect and must

restart the pipeline from the proper branch address

Control hazard

Delayed branch

» The delayed branch always executes the next sequential instruction,
with the branch taking place after that one instruction delay

» MIPS software will place an instruction immediately after the delayed
branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe

instruction
Program
execution Ti 200 400 600 800 1000 1200 1400 .
order Ime I I I I T I I -
(in instructions)
i D
add $4,85,86 | "o | [Re| AU | aciess |9
Instruction Data
beq $1, $2, 40 200 ps fetch Reg access
bubble/(bubble/(bubble/(bubble bubble
O O
or $7, $8, $9 = »|Instruction Data |
Y 400 ps fetch access 9

Big picture of pipeline

Pipelining increases the number of simultaneously executing
instructions and the rate at which instructions are started and
completed.

Pipelining does not reduce the time it takes to complete an

individual instruction, so-called the latency

Pipelined datapath and control

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write bact

register file read

IF: Instruction fetch MEM: Memory access

.		
Updating PC : !		
Add T T		
4 —>~		I Add . I
	ADD result i	
	(Shift	
	\left2 I	
L ' ' I		
: »	Read Read :	:
register 1 data 1		
PC Address I I Zero ———»		
' > Read	ALU oyl !	
register 2	result 4 »	Address
Instruction —:—0 Registers i 0	Zeaa;g	
Write Read	M : Data	
Instruction	register data 2	u
X		
memoy	1 Write I	@1
: data : ! Write :		
I I	>	data
16		
: \ Sign-	I :	
I AN extend		
I		
}		

" Writing back to registers

* One way to show what happens 1n pipelined execution 1s to
pretend that each instruction has its own datapath, and then to
place these datapaths on a timeline to show their relationship

Time (in clock cycles) >

Progra,rn | | | | | |
execution cc1 ! cc2 | cca ! cca ccs lcce | cc7
S D A R R
INn INstructions
ey e e
w$1,10050) | IM[—{=Reg | SALU-—DM |I |
Sl dih
| | | \ | | |
| |- | | =
w $2, 200($0) Y —uiRegl " SALU——DM——Reg |
e diiins
| | | | \ | |
Iw $3, 300($0) | [IM——=Reg| | >ALUH— DM~ Ee:gl
" PP

e IM: The instruction memory and the PC in the instruction fetch stage
* Reg: The register file and sign extender in the instruction decode/ register file read stage, etc

* DM: Data memory access
75

If we add some registers to hold data, portions of a single data path ¢
shared during instruction execution

an be

All instructions advance during each clock cycle from one pipeline register to

the next
No pipeline register at the end of the write-back stage

PC can be thought of as a visible pipeline register

IFD ID/EX EXMEM

Add > > > \
Add Add

4 result o
Shift
left 2 1

MEM/WB

L
S
PC »| Address b Read
2 " | register 1 Read > -
— 2 data 1
. » | Read Zero - e
i register 2 ALU
e roon . — % Registers Read — »| Address Fead
memory Write ph = >0 result data
| Writ ata 2 M
register u Data
Write memory
data L 1x
Write
7| data
16 _ Sign- 32
extend

Pipeline registers
are highlighted) L -

64 bits 128 bits 97 bits

64bits 76

Example: Iw 1nstruction

Instruction fetch

* Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
* Increase PC by 4 and write it back to PC

* The increased addressis also saved in the IF/ID pipeline register

lw
I I

Instruction fetch

IFAD IVEX EUMEM MEMWE

Y

B

Instruction rogstor

Instucio
iz
i &

4

3

|

\

'
ITE
8’?\)
[
2
1
Y
——3
#
¥
iz
Y v
X
:
§
is
g
¥

Y

Y

Y

We highlight the right half of € [g |2 a
registers or memory when they are -

being read and highlight the lef

half when they are being written

77

Instruction decode and register file read

* The following three values are stored in ID/EX pipeline register
» 16-bit immediate field
» Two register numbers

» Increased PC | " |

I Instruction decode

IF/ID ID/EX EXMEM MEMWB

> Add - > \
Add

‘> ook
Shift
left 2
Address Read Read
register 1 o= =
e data 1 \
Zero

Read
Instruction register 2 AUy Read
memory

Registers .4 > —
> > Address ——
Write data 2 > B result data
register Data
Write memory
data | o ‘ »

Y

Instruction
Y

? Y

RN

Write

o data
16
4 Sign- 32] >
T 7| extend

Execute or address calculation
Reads contents of register 1
Sign-extend the immediate
Add the above two values in ALU
Save the sum 1n EXMEM pipeline register

Execution

IF/ID

Add
4 —>

Address

Instruction
memory

] Instruction

Read

" |register

Read

register 2
9 Registers

Write

" |register

Write
data

Read

1 -
data 1

Read »
data 2

1
6 [sign- |32 |
A extend

EXMEM
Adg~dd
Shift result
left 2 /
o Zero >
ALU Read
o result] Address data
u Data
x memory
Write
> data

MEM/WB

79

Memory access

Read the data memory using the address from the EX/MEM register
Load the data into MEM/WB pipeline register

| m |
| Memory |
IF/ID ID/EX EXMEM MEM/WB
4 —>’ Adam’::: >
Shift
left 2
e
c
Address 2 Read
g register 1 Read > > \
- @ data 1
c
= Read Zero —-
Instruction register 2 ALU
Registers .., ALU Read | |
memory) a > > @ Address
Write data 2 B result data
register -
Write memory
data
_ Write
7| data
16 sign | ® >
| extend

80

Write-back
* Read the data from MEM/WB pipeline register
* Write it into the register file

Iw
Write-back

IF/ID ID/EX EXMEM MEM/WB

>Add

4 —> Add Add >
Shift ©
left 2

\

s

-
Address g Read
2 register 1 Foad. > > \
< |Read Zero }— —
Instruction register 2 ALU
- Registers . ALU > Read
memory a > @ Address -
Write data 2 Lot = result data
register / Data
Write memory
data [S8
- 5| Write

- data
16 Sign- 32
extend

81

Example: sw instruction

Instruction fetch

* Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
* Increase PC by 4 and write it back to PC

* The increased addressis also saved in the IF/ID pipeline register

lw
I I

Instruction fetch

IFAD IVEX EUMEM MEMWE

Y

Addrass Road
rogistor 1 Road > = \
— datal
0

Instruction rogstor

Instuction

Y
¢
HE
8’?\)
[
2
7
Y
——
#
g
Y ¥
t .
:
g
is
g
¥

Y

Y

We highlight the right half of € [g |2 a
registers or memory when they are -

being read and highlight the lef

half when they are being written

Instruction decode and register file read

* The following three values are stored in ID/EX pipeline register
» 16-bit immediate field
» Two register numbers

» Increased PC | " |

I Instruction decode

IF/ID ID/EX EXMEM MEMWB

> Add - > \
Add

‘> ook
Shift
left 2
Address Read Read
register 1 o= =
e data 1 \
Zero

Read
Instruction register 2 AUy Read
memory

Registers .4 > —
> > Address ——
Write data 2 > B result data
register Data
Write memory
data | o ‘ »

Y

Instruction
Y

? Y

RN

Write

o data
16
4 Sign- 32] >
T 7| extend

Execute or address calculation

* Reads contents of register 2

* Sign-extend the immediate

* Add the above two values in ALU

* Save the sum in EXMEM pipeline register

Execution

IF/ID ID/EX EXMEM MEMWB

Add >
4 — >
0
M
PC Address
l; S rF:sZ?:iem Read
—\ 1 § data 1
§ »| Read —
Instruction = register 2 Read
memory 79 |y PoOISters . Address data [| [
" register data 2 Data
—>| Write memory
data
_ | Write
m data
16 Sign- 3\2 - o

\\Vw |

-

Ox & 2

Memory access

Write the data to the memory according to the address calculated earlier

Address

Instruction
memory

IF/ID

ID/EX

| Read

register
Read
register
Write
register
Write
data

1 Read

a2
Shift
left 2

data 1 o

2
Registers .4

data 2

1§ sign- | ®
T | extend |

| W |
| Memory |
EX'MEM MEMWB
> -
> @ Address F;Z: g
Data
memory
_ _ | wriee
7| data

85

Write-back
* Do nothing

sw
Wi

rite-back

IF/ID ID/EX EX/MEM MEMWB

4
Shift result
left 2

—-
Address \g Read Road
2 register 1 & e e
B e data 1 ,\
£ Read Zero — -
Instruction register 2 AU Ly Road
> Registers .4 > H@—>| Address Rl
y Wiite data 2 = - result data
register Data
Write memory
™| data [2
_ | wrie
- data
16 Sign- | 2 >

extend

86

What we learn?

* The information from one stage to another should be placed
in the pipeline registers; otherwise, the information would
be lost when the next instruction enters the pipeline stage

* Each logical component of the datapath should be used only
within a single pipeline stage; otherwise, we would have a
structural hazard

A bug ?

How can we find the register to which we write the data back?

Iw
Write-back

IF/ID ID/EX EXMEM MEMWB

—
(0
M
u D> | Address
x
1

Instruction
memory

Read
P Address data ™ {1

88

A revised pipeline control

IFAD IDEX EXMEM MEMWB
—_—
5
4 Add -
result
Shift
left2
Address Read Aea
regsier 1 -
s data 1 ,\
. Read Zero =
Instruction register 2 ALY Ly Read
Regiskers
v Wit fead result || P> Address data []
»| VTE data2
regster o
Write memory
> data
o Write
data
16 sgn- | 32 -
— extend -

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the
MEM/WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color.

89

Graphically representing pipelines

Multiple-clock-cycle pipeline diagram

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CCe6 CC7 ccs CC9

Program
execution
order

(in instructions) M
2 ‘ L Req! Physical r rses are
w $10, 20($1) | IM L_egl: -[DM g ysical recourses
shown in each stage
sub$11, 52,83 R :@. o e
add $12, $3, $4 M FReg :@- oM egl
w $13, 24($1) M F=Reg[] @ T —Reg

[~ 1
| add $14, $5, $6 IM - -EtR_eEl_ _@- ~|ﬂ:|—6_gll

90

Graphically representing pipelines

A more traditional version of multiple-clock-cycle pipeline diagram

Program
execution
order

(in instructions)

w $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
w $13, 24($1)

add $14, $5, $6

Time (in clock cycles) >
CC1 cC2 CC3 CC4 CC5 CcCé6 CC7 cCs8 CcC9
Instruction | Instruction | = o0 Data | \rrite-back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution accons Write-back
Instruction | Instruction Execulion Data Write-back
fetch decode access
Instruction | Instruction . Data .
fetch denods Execution acCons Write-back
Instruction | Instruction . Data .
fetch deoods Execution ACCO8S Write-back

91

Graphically representing pipelines

* Single-clock-cycle pipeline diagrams show the state of the entire
data path during a single clock cycle

add $14, $5, $6 | w $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | w $10, 20($1) |
Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEMWB
[r—
Add ’\
Add A0
! Shift esut
left 2
L
p—p-| ACIr@SS Read
| H regster 1 (;":;"1
Read Zero >

lhsmdm

register 2 ALl
Instruction Registers U au Adress Read | |
memory Write aahmmz ou result data
mgisier u Data
Write X memory
data | 1

e
data

16 [gign | 32
AJ @ Al

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram. 92

Pipelined control

“xe2°

IF/ID

ID/EX

»
)

Address

Instruction
memory

RegWrite
|

Read
register 1

Read
register 2

Register
Write 09 Reaq
register data 2

Write
data

Y

Read
data 1

nstruction

1]

Shift
left 2

EX/MEM

AddAdd
result

Instruction
(15-0)
[8

extend

Instruction
(20-16)

16 Sign- 32

\i

Y

Instruction
(15-11)

Branch

MemWrite
1

MEM/WB

!

Write

Y

data

Address

Data
memory

Read
data

Y

2

D ——
®

MemReac

C

MemtoReg

Y

Five groups of control signals

* Instruction fetch
» Read instruction - e
memory and write the
PC Tl .
»> Always asserted ¢ —'/
* Instruction decode/register r
. -0 legWrite
file read " Adies 5 [hed
. . L, 1" g *| register 1 gaetgd1 -
» No optional control line B4 . |peas
Instruction . 4 mglsml-;ozglshr
memary wite " o0 |+
™! register data 2
—| Write
data
Instruction
(15-0) 1? ~@_32~_\
N extend
Instruction
(20-16) .
Instruction
(15-11) .

94

Five groups of control signals

 Execution/address calculation

» RegDst, ALUOp, ALUSrc

Instruction Instruction Desired ALU control
opcode operation Function code ALU action input

load word 0010
SW OO store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

Effect when deasserted (0) Effect when asserted (1)

RegDst

ALUSrc

The register destination number for
the Write register comesfromthe rt

field (bits 20:16)

The second ALU Operand comes
from the second register file output

(Read data 2)

The register destination number for the
Write register comes from the rd field (bits
15:11)

The second ALU operand s the sign-
extended, lower 16 bits of the instruction

95

Five groups of control signals

* Memory access
» Branch, MemRead, and MemWrite
» PCsrc selects the next sequential address unless control asserts Branch and the
ALU result was 0

Effect when deasserted (0) Effect when asserted (1)

MemRead None Data memory contents designated by the
address input are put on the Read data output

MemWrite None Data memory contents designated by the
address input are replaced by the value on the
Write data input

PCSrc The PCis replaced by the output of the The PCis replaced by the output of the adder
address that computesthe value of PC+4 that calculatesthe branchtarget

96

Five groups of control signals

* Write-back
» MemtoReg, RegWrite

Effect when deasserted (0) Effect when asserted (1)

MemtoReg The value fed tothe register Write data The value fed tothe register Write data input
input comes from the ALU comes from the data memory
RegWrite None The register onthe Write register input is

written with the value on the Write data input

97

Implementing the control

* Control implementation is to set the control signals
* Extending the pipeline register to store the control settings

Instruction/

"lwB

WB

™ Control M

IF/ID

ID/EX

)

EX/MEM

b

- _.

WB

MEM/WB

Note that four of the
nine control lines are
used in the EX phase,
with the remaining five
control lines passed on
to the EX/MEM pipeline
register extended to hold
the control lines; three
are used during the
MEM stage, and the last
two are passed to
MEM/WB for use in the
WB stage.

98

PCSrc

IF/ID

\

> Add

Address

Instruction
memory

wB

Instruction

<z
s
g
@
Read
1 i Read
register 1 data 1
Read
register 2
Registers
| Wrie dats 2
"~ |register
| Write
data

Y

Y

LEXIMBI
WB
L MEM/WB
i
Shift y Branch
left 2
ALUSrc —]
/l
g g
S]
@
. 5 B
> = £
3
> Zero 3o — b
ALU
AUl Read |
result JTT ™| [P| Address data ['u
/ Data l’l‘
memory 0
_ | Write
\ o o data
€ [aw |
—0—\-»{@" ol ‘}— MemRead
AL
) [Avoe |
M > -
" -
x
1
RegDst

99

Data hazard: forwarding vs stalling

* An example

sub $72, $1,9%3 #f Register $2 written by sub

and $12,%2,%5 # 1st operand($2) depends on sub
or $13,%$6,%7 # 2nd operand($2) depends on sub
add $14,$2,%2 # 1st($2) & 2nd($2) depend on sub
SW $15,100(%2) 4 Base ($2) depends on sub

100

.

Time (in clock cycles) >
Value of CC1 CcC2 CC3 CC4 CC5 CC6 CC7 CcCs8 CC9

register $2: 10 10 10 10 10/-20 =20 —20 =20 =20

Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2,52

y sw $15, 100($2)

101

A more precise notation of dependences

la. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

« FE.g, “ID/EX RegisterRs” refers to the number of one register whose value
is found in the pipeline register ID/EX

» The first part of the name is the name of the pipeline register

e The second part of the name is the name of the fieldin that register

Time (in clock cycles) >
Value of CC1 CcC2 CC3 CC4 CC5 CC6 CC7 CCs8 CC9

register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program
!
s 1a. EX/MEM. RegisterRd = ID/EX. RegisterRs = $2

(in instructions)

sub $2, $1, $3 IM
and $12, $2, $5

or $13, $6, 52 _e_gjll

add $14, $2,$2 w_ —_e_gj

| sw$15,100($2) M (=Reg | [> DM Reg

—

103

Time (in clock cycles) >
Value of CC1 CcC2 CC3 CC4 CC5 CC6 CC7 CCs8 CC9

register $2: 10 10 10 10 10/-20 —20 —20 —20 -20
Program
execution
order 2b. MEM/WB. RegisterRd = ID/EX. RegisterRt = $2

(in instructions) B

sub $2, $1, $3 IM LE[: :D_

and $12, $2, $5 IM — —HF;eg

L

— 1

iegdl
]

or $13, $6, $2 IM —

oM B¢

| sw $15,100(52) M (=Re :D» DM (Reg

104

add $14, $2,52

Time (in clock cycles)
CC1 cC2 CC3 CcC4 CC5 cCé6 cC7 CcCs8 cC9

Y

Value of register $2: 10 10 10 10 1020 20 -20 -20 -20
Value of EX/MEM: X X X -20 X X X X X
Value of MEM/WB: X X X X -20 X X X X
Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2,$5

or $13, $6, $2

add $14,%2, $2

sw $15, 100($2)

105

* The above policy may be inaccurate when the instruction does

not write registers such that it would forward when 1t shouldn’t
» Examining the WB control field of the pipeline register during the EX
and MEM stages determines whether RegWrite is asserted

* In MIPS, $0 should always yield an operand of 0. What if an

instruction has $0 as its destination (e.g., sll $0, $1, 2)

» We have to avoid forwarding its possibly nonzero result value

la. EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM. RegisterRd # 0

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs MEM/WB. RegisterRd # 0
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

ID/EX EX/MEM MEM/WB
- » U >
' Y
—>
i ForwardA
Registers 4 > ALU .
-@ _ Data . .
| x g memory
>
ForwardB
fs >
Rt .
- . m EXIMEM.Regnsteer;
Rd ; u =
v

o[Forwarding \ —_

MEM/WB. Flegisteer

> unit -

Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

107

1. EX hazard:

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd # 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA
if (EX/MEM.RegWrite

10

and (EX/MEM.RegisterRd # 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB

10

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

108

2. MEM hazard:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA
if (MEM/WB.RegWrite

01

and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB

01

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

109

Another potential data hazard can occur when there 1s a conflict

between the result of the WB stage instruction and the MEM stage

instruction — which should be forwarded?

* Don't even try to forward from MEM/WB to EX; if there is
already forwarding of more recent result from EX/MEM.

add $1, $1, $2 | v -EiFEeEIZ @:‘ DM —Ee:gl:
DM g

[T 1
add $1, $1, $4 M Reg EF oY r—Ee_gl

110

add $1, $1, $3 IM — —Reg

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd # 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd # 0)
and (EX/MEM. RegisterRd = ID/EX. RegisterRs))
and (MEM/WB. RegisterRd = ID/EX. RegisterRs)) ForwardA =01

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd # 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd # 0)
and (EX/MEM. RegisterRd= ID/EX. RegisterRt))
and (MEM/WB. RegisterRd = ID/EX. RegisterRt)) ForwardB = 01

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

111

PC

| Instruction

memory

ID/EX

/ \-‘., e EX/MEM
IF/ID N4 EX L .M | lwB|
I w
I . u .
X
SHt s
g Registers t ALU | . .
%
£ .
T | x " memory
o
IF/ID.RegisterRs Rs ¢ >
IF/ID.RegisterRt Rt
IF/ID.RegisterRt__| Rt ol EX/MEM RegisterRd
1 IF/ID.RegisterRd__| [Rd U g
X . -
L —7 -\
U [Forwarding .| | MEM/WB.RegisterRd
> unit) -
&

xc=

112

Data Hazards and Stalls

Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this
combination must result in a stall by the hazard detection unit.

Time (in clock cycles) "
CC 1 CC2 CC3 CC4 CC5 CCé6 CC7 cCcs8 CC9

Program

execution

order

(in instructions) _

- -1
w $2, 20($1) IM ~|:|—DReg :D— DM —|—Rgq!
r— —‘ ﬁ_1
and $4, $2, $5 IM — —Dﬁiﬁ DM —a—Reg!
i [J
r— -1
or $8, $2, $6 M | FEReg DM|— —iﬂag:
L OReal | gl
add $9, $4, $2 M — (5Reg | —[DM - —E’%
r— -1
| sts1, 86,87 IM | |-“Reg :D» 1i«‘_ﬂ—ﬁag
- - 113

Hazard detection unit

It operates during the ID stage so that 1t can insert the stall
between the load and its use.

if (ID/EX.MemRead and Line 1
(C(ID/EX.RegisterRt = IF/ID.RegisterRs) or Line?2

(ID/EX.RegisterRt = IF/ID.RegisterRt))) Line3
stall the pipeline Line 4

e Line I: Check if the instructionisa load
e Line 2 and Line 3: Check if the destination register field of the load

instruction in the EX stage matches either the source register of the
instruction in the ID stage

* Lin4: The instruction stalls one clock cycle

114

« Ifthe instructionin ID stage is stalled, then the instruction in the IF stage must
also be stalled; otherwise, the fetched instruction would be lost
* How to stall an instruction?
» Preventing the PC register and the IF/ID pipeline register from changing
» The back half of the pipeline (starting with the EX stage) must be performed
with no effect

Time (in clock cycles)
CC1 CcC2 CC3 CC4 CC5 CC#6 cC7 cCs CC9

Program
execution
order

(in instructions) _

w $2, 20($1) IM ~|:|—DReg :D{ DM

and $4, $2, $5 IM
-

or $8, $2, $6 @—”Reg

add $9, $4, $2 IM

-1
s

oot

r— -1
| sit$1,86, 87 IM — SReg :D~ Wﬂ}—@g
- - 115

Changing the EX, MEM, and WB control fields of the ID/EX pipeline register

to 0, which will result in a nop instruction.

Time (in clock cycles)
CC1 cC2 CC3 CC4 CC5 cCe6 CC7 CC8

CC9

fies

Program
execution
order
(in instructions)
Iw $2, 20($1) IM
m bubble
-
and becomes nop g/
A~
and $4, $2, $5 oM %
or $8, $2, $6 :> e_gJ:
| add $9, $4, $2 M Reg | DM

CC 10

116

/ Hazard \

PCWrite

H‘

IF/DWrite

IF/
3

ID/EX.MemRead

Instruction
memory

LI\fEM/WB

detection |«
unit /
A
’ ID/EX
. WB EX/MEM
Control *lu M = WB
X
ID —- EX L > M
(\
> > M
»lu =
S = X
g Registers N
E > ~ ALU
— i "l:' Data
- memo
- ry
IF/ID.RegisterRs
IF/ID.RegisterRt .
IF/ID.RegisterRt ae, |M
IF/ID.RegisterRd R, |\ o
ID/EX.RegisterRt J

Forwarding \

unit

\
xc=s

;5

117

Control hazard

P

Time (in clock cycles)

CC1

rogram

execution
order
(in instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

\

| 72 1w $4, 50($7)

CcC2 CC3 CC4 CC5 CcCe6 cC7 CcCs8 CC9

118

Assume Branch Not Taken

* Predict that the branch will not be taken and thus continue execution down
the sequential instruction stream
* What if we make a wrong prediction?

* Discard the instruction that are being fetched and decoded

* Execution continues at the branch target

Time (in clock cycles)

CC1

Program

e
(o]

(i

xecution
rder
n instructions)

40 beq $1, $3, 28

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

CC2

- af

—

\

y 72 Iw $4, 50($7)

R
-
il

CC3

CC4

DM

CC5

—1

Reg:

DM

cCe6

cCc7

ccs

CC9

119

Reducing the Delay of Branches

 Reduce the cost of the taken branch

» Computing the branch target address: move the branch adder from the
EX stage to the ID stage

» Evaluating the branch decision (comparing the two registers read during
the ID stage to see i1f they are equal): first XORing their respective bits
and then ORing all the results

and $12, $2, $5 E beq $1, $3, 7 i sub $10, $4, $8 E before<1> E before<2>
l : l l
| l I I
IF.Flush ! | ! !
i Hazard : : :
—| detection | | |
unit : : |
1 \ IDJEX ! |
M Y /'Iﬂ E
> Hup——+ MEM/WB
2r"7 0<—LXJ L. L
72 ! |
e
$3, u
Data X
71 memory

[
| @7 ¥ :
1 unit /<= 4
: - '

Clock 3

The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle 121

- e, W84, 50(87) : Bubble (nop) beq $1, $3, 7 sub $10, . .. before<1>
.Flus ! ! !
i | |
| | |
: Hazard i i
[——» detection ! l I
\ unit), : :
b | 1
I I
| |
EXHEN :
¢ ghs MEN:IIWB
(B; 0 I m p
e
" Registers ~
6 - Data @
g memory

I 1 I
: : Forwarding :
1 l unit - 4 T
! ! : :
Clock 4 i : : :

Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction

in the pipeline as a result of the taken branch

122

Dynamic branch prediction

* Prediction of branches at runtime using runtime information
» Look up the address of the instruction to see if a branch was taken the
last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time.
» Branch prediction buffer (branch history table): A small memory that is
indexed by the lower portion of the address of the branch instruction
and that contains one or more bits indicating whether the branch was

recently taken or not

Not taken

Predict taken
Taken
Not taken
Not taken
Predict not taken
Taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the midpoint of

its range as the division between taken and not taken.
124

Pipeline Summary

IF.Flush

./ Hazard N\

_ | Instruction

memory

IFID
Y

detection l
unit Y

,"/ ~\".

4

|
Control

\\N/,,

Shift

Registers

xe= -

w
2
Dy

-3
3
o

Exm EM
WEB—

N

M
- U -

X

) \
¢ ALU
(\
»M

Y11

-/

A

Data
memory

Geo

;*/Fowarding |

unit

B —

xecZ

Exceptions

* Exception: Any unexpected change in control flow without
distinguishing whether the cause 1s internal or external

* Interruption: An exception that comes from outside of the

processor
Type of event MIPS terminology
|/0O device request External Interrupt
Invoke the operating system from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or interrupt

126

How exceptions are handled in the MIPS architecture

* Two types of exceptions in our current MIPS implementation
* Execution of an undefined instruction
* An arithmetic overflow
» A basic action that must be performed when an exception occurs
 Save the address of the offending instruction in the 32-bit exception
program counter (EPC)
* Actions taken to deal with exceptions
* Providing some service to user program
* Taking predefined action in response to an overflow (or stopping the
execution of the program)
* Reporting an error
* When the above actions are done
 Terminating the program or continue its execution using the EPC to
return to where the program is interrupted

* To take proper actions to handle exceptions, the operating
system must know the reason for the exception
e 32-bit Cause register used by MIPS (a status register
holding a field that indicates the reason for the exception)
* Vectored interrupts (an interrupt for which the address to
which control 1s transferred 1s determined by the cause
the exception)

Undefined instruction 8000 00006y
Arithmetic overflow 8000 0180y,64

* When the exception 1s not vectored, a single entry point
(8000 0180,¢) for all exceptions should be used, and the
operating system decodes the status register to find the

Ccausc

128

Exceptions in a pipelined implementation

* In pipeline, exceptions can be treated as another form of control hazard
* Detecting exceptionin EX stage
* Flushing the instructions which are in the stages of IF, ID, and EX
* Saving the address of the offending instruction in the EPC

HHHHH

|
| Control UEWB
IFID D— 0 B
! Shift
4 —» left 2
Registers
M
u
80000180 = Instruction L L x
memory Data | —
I memory
extend

129

Given this instruction sequence

40,., Sub $11, $2, $4
44... and $12, $2, $5
48,., Or $13, $2, %6
4C,., add $1, $2, $1
5046, STt $15, $6, $7
54,., Tw $16, 50(%$7)

Assume the instruction to be invoked on an exception begin
like this

80000180, SW $26, 1000($0)
80000184, sw $27, 1004($0)

and $12, ..

Iw $16, 50($7) | slt $15, $6, $7 : add $1, $2, $1 : or$13,... |

I ! EXFlush | :

IF.Flush \ : : :
: ID.Flush ! | :

! /~ Hazard "\ ! ! !

| detection : : : :

unit / ! M ! |

ID/EX J | |

X ' i

80000180 =

IF.{

Clock 6

v
M
u
X

Data
memory

.

1 !
orwarding
ﬂ\p—

.

131

sw $26, 1000($0) | bubble (nop) . bubble : bubble ,
; | EXFlush | i
IF.Flush ! : . i
: ID.Flush | ! !
| / Hazard | : :
tkdetection ' : ! ! :
unit / ! M : :
Q ID/EX (L] 00 ! !
0 E"F 0 |0-'L)-(J 1 :
M i W EX/MEM |
Control ~u M ooom‘ U we| 2 MEM/WB
Y M
—{U
- X
aooomao-:';oo‘“ »E‘m Data
H-{ X memory
p
u

Clock 7

>
orwarding\
unit

or$13, ..

132

Parallelism via Instructions

* Instruction-Level Parallelism: Pipelining exploits the potential parallelism
among instructions.
» Increasing the depth of the pipeline to overlap more instructions
» Replicating the internal components of the computer so that it can
launch multiple instructions in every pipeline stage (also called
“multiple issue”)
* Multipleissue
» Static multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made by the compiler before
execution
» Dynamic multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made during execution by the
processor (also called “superscalar”)

Implementing multiple-issue pipeline

* Packaging instruction into issue slots
» How many instruction can be issued in a given clock cycle?
» Which instruction can be issued in a given clock cycle?
* Dealing with data and control hazards
» In static issue processor, the compiler handles some (or all) of the
consequences of data/control hazards
» In dynamic issue processor, hardware techniques operating at execution

time are used to alleviate at least some classes of hazards

Static multiple issue

Static multiple-issue processors package instructions and deal with hazards
through compilers
» Instructions are packaged into issue packets each of which can be
executed in one clock cycle, such that each multiple issue can be
considered as a single instruction allowing several operations in certain
predefined fields (so-called Very Long Instruction Word or VLIW)
» Most static issue processors rely on compilers to take on some

responsibility for handling data and control hazards

Dynamic multiple-issue processors (Superscalar)

* In the simplest superscalar processor, instructions issue in order, and the
processor decides how many instructions can issue in a given clock cycle
* Compiler i1s still needed to schedule instruction to move dependences apart
and thereby improve the instruction issue rate
* Different from VLIW processors,
* The code, whether scheduled or not, is guarantted by the harware to
execute correctly
 Compiled code will always run correctly independent of the issue rate

or pipeline structure

Thanks !

