
Computer	 Organization	 and	 Design
The	 Hardware/Software	 Interface

Chapter	 4	 	 	 -‐ Processor

1

Instructor: Dr. Feng Li

• 4.1	 Introduction	
• 4.2	 Logic	 Design	 Conventions
• 4.3	 Building	 a	 datapath
• 4.4	 A	 Simple	 Implementation	 Scheme
• 4.5	 An	 Overview	 of	 Pipelining
• 4.6	 Pipelined	 Datapath	 and	 Control	
• 4.7	 Data	 Hazards:	 Forwarding	 versus	 Stalling	
• 4.8	 Control	 Hazards	
• 4.9	 Exceptions	
• 4.10	 Parallelism	 and	 Advanced	 Instruction-‐Level	 Parallelism	
• …	 …

2

Chapter	 Four:	 	 	 The	 processor

• We’ll	 look	 at	 an	 implementation	 of	 the	 MIPS
• Simplified	 to	 contain	 only:
• memory-‐reference	 instructions:	 	 lw,	 sw
• arithmetic-‐logical	 instructions:	 	 add,	 sub,	 and,	 or,	 slt
• control	 flow	 instructions:	 	 beq,	 j

• An	 Overview	 of	 the	 implementation
• For	 every	 instruction,	 the	 first	 two	 step	 are	 identical

• Fetch	 the	 instruction	 from	 the	 memory
• Decode	 and	 read	 the	 registers

• Next	 steps	 depend	 on	 the	 instruction	 class
• Memory-‐reference	 instructions,	 Arithmetic-‐logical	 instructions,	 branch	 instructions

3

Introduction

4

An	 abstract	 view	 of	 the	 implementation	 of	 MIPS	

5

• Datapath elements consist of two types of logic elements
• Combinational elements that operates on datavalues
• State elements: elements that contain state

• The outputs of combinational elements depend only on the
current input
• State elements have some internal storage, and the state can
be maintained even when computers have no power
• Two inputs: data value and clock
• One output: the value thatwas written in an earlier clock cycle
• E.g., D-‐type flip-‐flop,memories, registers

6

Logic	 Design	 Conventions

•Clocks	 used	 in	 synchronous	 logic	

Øwhen	 should	 an	 element	 that	 contains	 state	

be	 updated?

7

State	 Elements

cycle time
rising edge

falling edge

• Clocking	 methodology	 defines	 when	 signals	 can	 be	 read	 and	
when	 they	 can	 be	 written
• An	 edge-‐triggered	 clocking	 methodology
• Any	 values	 stored	 in	 a	 sequential	 logic	 element	 are	 updated	 only	 on	 a	
clock	 edge,	 which	 is	 a	 quick	 transition	 from	 low	 to	 high	 or	 vice	 versa

• Typical	 execution:
• read	 contents	 of	 some	 state	 elements,	
• send	 values	 through	 some	 combinational	 logic
• write	 results	 to	 one	 or	 more	 state	 elements

8

Clocking	 methodology

Clock cycle

State
element
1

Combinational logic
State
element
2

All signals must propagate from state
element 1, through the combinational
logic, and to state element 2 in the time
of one clock cycle.

• If	 a	 state	 element	 is	 not	 updated	 on	 every	 clock,	 then	 an	 explicit	
write	 control	 signal	 is	 required.
• Asserted:	 a	 signal	 is	 logically	 high
• Deasserted:	 a	 signal	 is	 logically	 low

9

• An	 edge-‐triggered	 methodology	 allows	 a	 state	 element	 to	 be	 read	
and	 written	 in	 the	 same	 clock	 cycle	 without	 creating	 a	 race	 that	 could	
lead	 to	 indeterminate	 data	 values

10

• Datapath element
• A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, theALU and adders

11

Building	 a	 datapath

12

Instruction	 fetching	 unit

13

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

• Read	 two	 registers,	 perform	 an	 ALU	 operation	 on	 the	 contents	
of	 the	 registers,	 and	 write	 the	 result	 to	 a	 register

14

R-‐type	 (or	 arithmetic-‐logical)	 instructions

32

32

1

32

• lw $t1,	 offset_value ($t2)
• sw $t1,	 offset_value ($t2)

15

Memory-‐reference	 instructions

• beq instruction
• Three	 operands:	 two	 registers	 that	 are	 compared	 for	 equality,	 and	 a	 16-‐bit	 offset	
used	 to	 compute	 the	 branch	 target	 address	 relative	 to	 the	 branch	 instruction	
address

• The	 base	 for	 branch	 address	 calculation	 is	 PC+4
• The	 offset	 is	 based	 on	 word	 rather	 than	 byte,	 so	 the	 offset	 field	 should	 be	 shifted	
left	 2	 bits

16

Branch	 instruction

• Compare	 the	 register	 contents	 to	 determine	 if	 the	 branch	 is	 taken	
or	 not
• Compute	 the	 branch	 target	 address

17

18

Implement	 the	 R-‐type	 instruction

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

R-instruction format：
op(6) rs(5) rt(5) rd(5) shamt func(6)

control

rs

rt

rd

B negate op function
0 00 and
0 01 Or
0 10 Add
1 10 Sub
1 11 Slt

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

19

Implement	 the	 I	 type	 instruction

bit21-25

bit 16 -20

rs

rt

32bits data

bit0-15

lw $t0, 200($s2)
if $s2=1000，it will load word in element number 1200 to $t0

op(6) rs(5) rt(5) Immediate data

20

Implementation	 of	 	 beq

16 32
Sign
extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation3

0

1
to PC

op(6) rs(5) rt(5) offset

PC

Instruction
memory

Read
address
Instruction

16 32

Registers

Write
register
Write
data

Read
data 1
Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

21

Combine	 the	 implementation	 R-‐type	 and	 I-‐type	

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

•Use	 multiplexors	 to	 stitch	 them	 together

22

Building	 the	 Datapath

Note : control signals e.g. add $s0, $s1,$s2/ addi $s0,$s1,100

• Data	 path	 +	 control	 function
• Instructions
• lw,	 sw
• beq
• add,	 sub,	 and,	 or,	 set	 on	 less	 than
• j

23

A	 simple	 implementation	 scheme

Depending	 on	 the	 instruction	 class,	 the	 ALU	 needs	 to	 perform	 one	 of	
these	 first	 five	 functions

24

ALU	 control

•We	 need	 a	 small	 control	 unit

• Input:	 the	 function	 field	 of	 the	 instruction	 and	 a	 2-‐bit	 control	

field	 (i.e.,	 ALUOp)

• Ouput:	 4-‐bit	 ALU	 control	 signal

•ALUOp indicates	 the	 operations	 that	 the	 ALU	 will	 perform

• Addition	 (00)	 for	 load	 and	 store	 instructions

• Subtraction	 (01)	 for	 beq

• Operations	 encoded	 in	 the	 funct field	 (10)

25

Analyze for cause and effect

• Informationcomes	 from	 the	 32	 bits	 of	 the	 instruction	 	

• Selecting	 the	 operations to	 perform	 (ALU,	 read/write,	 etc.)

• Controlling	 the	 flow	 of	 data (multiplexor	 inputs)

• ALU's	 operation	 based	 on	 instruction	 type and	 function code

26

Control

•2-‐level	 decoder

27

Scheme	 of	 Controller

First
Main
decoder

ALU
Decoder
Second

Signals for Other
Components (7 bits)

op(6) rs(5) rt(5) rd(5) shamt func(6)

ALU operation
(3 bits)

ALU op
(2 bits)

instruction op code

(6 bits)

•Main	 Control	 Unit	 function

• ALU	 op	 (2)

• Divided	 7	 control	 signals	 into	 2	 groups

• 4	 Mux

• 3	 R/W

28

Designing	 the	 Main	 Control	 Unit	 (First	 level)

ALU
control

Instruction op
code (6)

ALU op (2)

Mux (4)

R/W (3)

• How	 the	 ALU	 control	 bits	 are	 set	 depends	 on	 the	 ALUOp control	
bits	 and	 the	 different	 function	 codes	 for	 the	 R-‐type	 instructions

29

Designing	 the	 ALU	 decoder	 (Second	 level)

Instruction
opcode

ALUOp Instruction
operation

Funct
field

Desired
ALU action

ALU control

lw 00 Load word xxxxxx add 0010

sw 00 Store word xxxxxx add 0010

beq 01 branch equal xxxxxx subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 Set on less
than

101010 Set on less than 0111

• Describe	 it	 using	 a	 truth	 table	 (can	 turn	 into	 gates):

30

Truth	 Table	 for	 ALU	 decoder

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 210

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

don’t care

01231012310

01231012311

01230123102

FFFFFFFF
FFFFFFFF

)FFFFFFFF(

opop

opop

opop

ALUALUOperation
ALUALUOperation

ALUALUOperation

+=
+=

++=

• Identify	 the	 fields	 of	 an	 instruction
• Identify	 the	 control	 lines	 that	 are	 needed	 for	 the	 datapath

31

Designing	 the	 main	 control	 unit

Main	 observations
• Opcode (bits	 31:26)
• Registers	 rs (bits	 25:21)	 and	 rt (bits	 20:16)	 to	 be	 read
• Base	 register	 rs (bits	 25:21)	 for	 load/store	 instructions
• Offset	 for	 branch	 equal,	 load,	 and	 store	 (bits	 15:0)
• Destination	 register:	 rt (bits	 20:16)	 for	 load	 instruction,	 rd
(bits	 15:11)	 for	 R-‐type	 instruction

32

33

34

The	 effect	 of	 each	 of	 the	 seven	 control	 signals
Signal name Effect when deasserted(=0) Effect when asserted(=1)

RegDst
The register destination number
for the Write register comes from
the rt field (bit 20:16)

The register destination number for the
Write register comes from the rd field
(bit 15:11)

RegWrite None Register destination input is written
with the value on the Write data input

ALUScr
The second ALU operand come
from the second register file output
(Read data 2)

The second ALU operand is the sign-
extended lower 16 bits of the
instruction..

PCSrc
The PC is replaced by the output of
the adder that calculates the value
PC+4

The PC is replaced by the output of the
adder that calculates the branch target.

MemRead
None Data memory contents designated by

the address input are put on the Read
data output.

MemWrite
None Data memory contents designated by

the address input are replaced by value
on the Write data input.

MemtoReg The value fed to register Write data
input comes from the ALU

The value fed to the register Write data
input comes from the data memory.

35

Instruction RegDst ALUSrc
Memto-
Reg

Reg
Write

Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Truth Table for Main decoder

• Simple	 combinational	 logic	 (truth	 tables)

36

Circuitry	 of	 main	 Controller

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

opcode output

000000 R-format

100011 lw

101011 sw

000100 beq

• All	 of	 the	 logic	 is	 combinational

• We	 wait	 for	 everything	 to	 settle	 down,	 and	 the	 right	 thing	 to	 be	 done

• ALU	 might	 not	 produce	 right	 answer?	 	 right	 away

• we	 use	 write	 signals	 along	 with	 clock to	 determine	 when	 to	 write

• Cycle	 time	 determined	 by	 length	 of	 the	 longest	 path

37

Our	 Simple	 Control	 Structure

We are ignoring some details like setup and hold times

Clock cycle

State
element
1

Combinational logic
State
element
2

Instruction n Instruction n+1

38

The	 simple	 Datapath	 with	 the	 control	 unit

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

Address

Data
memory

Read
data

Write
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

Add ALU
result

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction [5-0]

R-type

Op rs rt rd shamtFunct

I-type

Op rs rt Immediate
Jump-type
Op address

Shift
left 2

Shift
left 2

26

Instruction [25-0] 1
M
U
X
0

jump

jump address[31-0]

28 PC+4[31-28]

Address

Data
memory

Read
data

Write
data

Add ALU
result

Shift
left 2

Shift
left 2

26

Instruction [25-0] jump address[31-0]

28 PC+4[31-28]

Sign
extend

Instruction [15-0]
16 32I-type

Op rs rt Immediate
Jump-type
Op address

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Instruction [31-26]

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction [5-0]

R-type

Op rs rt rd shamtFunct

1
M
U
X
0

jump

add sub and or slt

39

The	 Datapath	 in	 operation	 for	 R-‐type

26 28

Instruction [15-11] Write
data

Add ALU
result

Shift
left 2

Read
register 2

Read
data 2

Instruction [20-16]

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-type

Op rs rt rd shamtFunct

Jump-type
Op address

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Write
register

Write
data

Read
data 1

Registers

Address

Data
memory

Read
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-type

Op rs rt Immediate

1
M
U
X
0

jump

load instruction

40

The	 Datapath	 in	 operation	 for	 lw

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11]

Add ALU
result

Shift
left 2

Read
data 2

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-type

Op rs rt rd shamtFunct

Jump-type
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Data
memory

0
M
U
X
1

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-type

Op rs rt Immediate

1
M
U
X
0

jump

store instruction

41

The	 Datapath	 in	 operation	 for	 sw

Read
register 2

Instruction [20-16]
Instruction
memory

Write
data

Address

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Write
data

AddressALU
result

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11]

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-type

Op rs rt rd shamtFunct

Jump-type
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-type

Op rs rt Immediate

1
M
U
X
0

jump

beq instruction

42

The	 Datapath	 in	 operation	 for	 beq

Read
register 2

Instruction [20-16]
Instruction
memory

0
M
U
X
1

ALU

ALU
control

Add ALU
result

Shift
left 2

0
M
U
X
1

Data
memory

Read
data 2

Zero

• instruction	 format
• j	 	 Label

• Implementation
• The	 upper	 4	 bits	 of	 the	 current	 PC+4
• The	 26-‐bit	 immediate	 field	 of	 the	 jump	 instruction
• The	 bits	 00two

43

j	 instruction

(000010)2 26 bits address

Registers

0
M
U
X
1

ALU
control

0
M
U
X
1

Read
data 2

Zero

Read
register 1 Read

data 1
Read
register 2

Add ALU
result

Data
memory

Sign
extend

Instruction [25-21]

Instruction [15-0]
16 32

Instruction [20-16]

ALU

Shift
left 2

I-type

Op rs rt Immediate

Write
data

AddressALU
result

Read
data

0
M
U
X
1

Write
register

Write
data

0
M
U
X
1

Instruction [15-11]

Instruction [5-0]

R-type

Op rs rt rd shamtFunct

Control

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

1
M
U
X
0

jump

jump instruction

44

The	 Datapath	 in	 operation	 for	 j

Instruction
memory

Jump-type
Op address

28

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

Instruction [31-26]

26

Read
address

Instruction
[31-0]

Add

pc

4

Single Vs. Multi-Cycle Machine

• In this implementation, every instruction requires one
cycle to complete è cycle time = time taken for the
slowest instruction

• If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns

Load

Add

Beq

Cycle time = 5 ns

Load

Add

Beq

1 cycle

1 cycle

1 cycle

4 cycles

3 cycles

2 cycles

45

•what	 if	 we	 had	 a	 more	 complicated	 instruction	 like	
floating	 point?	 	
• If	 so,	 the	 	 waste	 of	 time	 will	 be	 more	 serious.

• The	 reason	 is	 the	 following:
• Let’s	 see	 the	 instruction	 ‘mult’
• This	 instruction	 needs	 to	 use	 the	 ALU	 repeatedly.

46

Single	 Cycle	 Problems

An Overview of Pipelining

47

• Pipelining is an implementation technique in which
multiple instructions are overlapped in execution

48

The laundry analogy for pipelining
• Place one dirty load of clothes in the washer
• When the washer is finished, place the wet load in the dryer
• When the dryer is finished, place the dry load on a table and

fold
• When folding is finished, ask your roommate to put the

clothes away

49

Pipelining paradox
• The time cost for handling a single dirty load is not shorter for

pipelining
• The pipelining for many loads is faster, since everything is

working in parallel, such that more loads are finished per hour

An Overview of Pipelining

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

50

Applying pipelining to processors

51

• A MIPS instruction takes five steps
Ø IF (Instruction Fetch): Fetch instruction from memory
Ø ID (Instruction Decoding): Read registers while decoding the instruction
Ø EX (ALU Execution): Execute the operation or calculate an address
Ø MEM (Memory Access): Access an operand in data memory
Ø WB (Write Back to Register): Write the result into a register

52

Single-cycle, nonpipelined execution versus pipelined execution

A 5-Stage Pipeline

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution
• MEM: memory access
• WB: Write Back to Reg

53

54

What would happen if we increased the number of instructions?

Fro example, 1 000 003 instructions.

Total execution timepipelined = 200 001 400 ps

Total execution timenonpipelined= 800 002 400 ps

800	 002	 400	 𝑝𝑠
200	 001	 400	 𝑝𝑠 ≈ 4

Pipelining improves performance by increasing instruction
throughput, as opposed to decreasing the execution time of an
individual instruction.

Designing instruction sets for pipelining

55

• All MIPS instructions are the same length

• MIPS has only a few instruction formats, with the source register

fields being located in the same place in each instruction

• Memory operands only appear in loads or stores in MIPS

• Operands must be aligned in memory

Pipeline hazards

56

• Hazards: The next instruction cannot execute in the

following clock cycle
Ø Structural hazard

Ø Data hazard

Ø Control hazard

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

57

Structure hazard

58

When a planned instruction cannot execute in the proper
clock cycle because the hardware does not support the
combination of instructions that are set to execute

We use a washer-dryer combination
instead of a separate washer and
dryer

Data hazard

59

When a planned instruction cannot execute in the proper
clock cycle because data that is needed to execute the
instruction is not yet available

Example:

Solution: We do not have to wait for the instruction to
complete before trying to resolve the data hazard. E.g., as
soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract.

add $s0, $t0, $t1

sub $t2, $s0, $t3

60

Forwarding (or bypassing):
A method of resolving a data hazard by retrieving the missing

data element from internal buffers rather than waiting for it to

arrive from programmer-visible registers or memory

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution

• MEM: memory access
• WB: Write Back to Register

61

Data Hazards

62

Bypassing

• Some data hazard stalls can be eliminated: bypassing 63

Load-use data hazard

64

• A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it is needed
by another instruction

• Solution: Pipeline stall (also called “bubble”)

Example - bubble

A  bubble  is  inserted  beginning  in  clock  cycle  4,  by  changing  the  
and  instruction  to  a  nop.

65

Load-use data hazard

66

• A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it is needed
by another instruction

• Solution: Pipeline stall (also called “bubble”)

67

a = b + e;
c = b + f;

Assume	 that	 all	 variables	 are	 in	 memory	
and	 are	 addressable	 as	 offsets	 from	 $t0

Control hazard

68

• When a proper instruction cannot execute in the proper pipeline clock cycle
because the instruction that was fetched is not the one that is needed; that is the
flow of instruction addresses is not what the pipeline expected

69

• Branch prediction
Ø A method of resolving a branch hazard that assumes a given outcome

for the branch and proceeds from that assumption rather than waiting to

ascertain the actual outcome

70

Control hazard

71

• A more sophisticated version of branch predictor
Ø Predict some branches as taken, while some as untaken

Ø E.g., loops in a program

• Dynamic hardware predictor
Ø Keeping a history for each branch for taken or untaken, and then using the

recent past behavior to predict the future

Ø When the guess is wrong, the pipeline control must ensure that the

instruction following the wrongly guessed branch have no effect and must

restart the pipeline from the proper branch address

Control hazard

72

• Delayed branch
Ø The delayed branch always executes the next sequential instruction,

with the branch taking place after that one instruction delay
Ø MIPS software will place an instruction immediately after the delayed

branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe
instruction

Big picture of pipeline

73

• Pipelining increases the number of simultaneously executing

instructions and the rate at which instructions are started and

completed.

• Pipelining does not reduce the time it takes to complete an

individual instruction, so-called the latency

Pipelined datapath and control

74

Updating PC

Writing back to registers

75

• IM: The instruction memory and the PC in the instruction fetch stage
• Reg: The register file and sign extender in the instruction decode/ register file read stage, etc
• DM: Data memory access

• One way to show what happens in pipelined execution is to
pretend that each instruction has its own datapath, and then to
place these datapaths on a timeline to show their relationship

76

• If we add some registers to hold data, portions of a single data path can be
shared during instruction execution

• All instructions advance during each clock cycle from one pipeline register to
the next

• No pipeline register at the end of the write-back stage
• PC can be thought of as a visible pipeline register

64 bits 128 bits 97 bits 64bits

Pipeline registers
are highlighted

77

We highlight the right half of
registers or memory when they are
being read and highlight the left
half when they are being written

Example: lw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register

78

Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field
Ø Two register numbers
Ø Increased PC

79

Execute or address calculation
• Reads contents of register 1
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register

80

Memory access
• Read the data memory using the address from the EX/MEM register
• Load the data into MEM/WB pipeline register

81

Write-back
• Read the data from MEM/WB pipeline register
• Write it into the register file

82

We highlight the right half of
registers or memory when they are
being read and highlight the left
half when they are being written

Example: sw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register

83

Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field
Ø Two register numbers
Ø Increased PC

84

Execute or address calculation
• Reads contents of register 2
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register

85

Memory access
• Write the data to the memory according to the address calculated earlier

86

Write-back
• Do nothing

What we learn?

87

• The information from one stage to another should be placed
in the pipeline registers; otherwise, the information would
be lost when the next instruction enters the pipeline stage

• Each logical component of the datapath should be used only
within a single pipeline stage; otherwise, we would have a
structural hazard

A bug ?

88

How can we find the register to which we write the data back?

A revised pipeline control

89

Graphically representing pipelines

90

Multiple-clock-cycle pipeline diagram

Physical recourses are
shown in each stage

Graphically representing pipelines

91

A more traditional version of multiple-clock-cycle pipeline diagram

Graphically representing pipelines

92

• Single-clock-cycle pipeline diagrams show the state of the entire
data path during a single clock cycle

Pipelined control

93

Five groups of control signals

94

• Instruction fetch
Ø Read instruction

memory and write the
PC

Ø Always asserted
• Instruction decode/register

file read
Ø No optional control line

Five groups of control signals

95

• Execution/address calculation
Ø RegDst, ALUOp, ALUSrc

Signal	 name Effect	 when	 deasserted(0) Effect	 when	 asserted	 (1)

RegDst The	 register	 destinationnumber	 for	
the	 Write	 register	 comes	 from	 the	 rt
field	 (bits	 20:16)

The	 register	 destinationnumber	 for	 the	
Write	 register	 comes	 from	 the	 rd field	 (bits	
15:11)

ALUSrc The	 second	 ALU	 Operand	 comes	
from the	 second	 register	 file	 output	
(Read	 data	 2)

The	 second	 ALU	 operand	 is	 the	 sign-‐
extended,	 lower	 16 bits	 of	 the	 instruction	

Five groups of control signals

96

• Memory access
Ø Branch, MemRead, and MemWrite
Ø PCsrc selects the next sequential address unless control asserts Branch and the

ALU result was 0

Signal	 name Effect	 when	 deasserted(0) Effect	 when	 asserted	 (1)

MemRead None Data	 memory	 contents	 designated	 by	 the	
address	 input	 are	 put	 on	 the	 Read	 data	 output

MemWrite None Data	 memory	 contents	 designated	 by	 the	
address	 input	 are	 replaced	 by	 the	 value	 on	 the	
Write	 data	 input

PCSrc The	 PC	 is	 replaced	 by	 the	 output	 of	 the	
address that	 computes	 the	 value	 of	 PC+4

The	 PC	 is	 replaced	 by	 the	 output	 of	 the	 adder	
that	 calculates	 the	 branch	 target

Five groups of control signals

97

• Write-back
Ø MemtoReg, RegWrite

Signal	 name Effect	 when	 deasserted(0) Effect	 when	 asserted	 (1)

MemtoReg The	 value	 fed	 to	 the	 register	 Write	 data	
input	 comes	 from	 the	 ALU

The value	 fed	 to	 the	 register	 Write	 data	 input	
comes	 from	 the	 data	 memory

RegWrite None The	 register	 on	 the	 Write	 register	 input	 is	
written	 with	 the	 value	 on	 the	 Write	 data	 input

Implementing the control

98

• Control implementation is to set the control signals
• Extending the pipeline register to store the control settings

Note that four of the
nine control lines are
used in the EX phase,
with the remaining five
control lines passed on
to the EX/MEM pipeline
register extended to hold
the control lines; three
are used during the
MEM stage, and the last
two are passed to
MEM/WB for use in the
WB stage.

99

Data hazard: forwarding vs stalling

100

• An example

101

A more precise notation of dependences

102

• E.g., “ID/EX. RegisterRs” refers to the number of one register whose value
is found in the pipeline register ID/EX

• The first part of the name is the name of the pipeline register
• The second part of the name is the name of the field in that register

103

1a. EX/MEM. RegisterRd = ID/EX. RegisterRs = $2

104

2b. MEM/WB. RegisterRd = ID/EX. RegisterRt = $2

105

106

• The above policy may be inaccurate when the instruction does

not write registers such that it would forward when it shouldn’t
Ø Examining the WB control field of the pipeline register during the EX

and MEM stages determines whether RegWrite is asserted

• In MIPS, $0 should always yield an operand of 0. What if an

instruction has $0 as its destination (e.g., sll $0, $1, 2)
Ø We have to avoid forwarding its possibly nonzero result value

EX/MEM. RegisterRd ≠ 0

MEM/WB. RegisterRd ≠ 0

107

108

109

110

add $1, $1, $2

add $1, $1, $3

add $1, $1, $4

Another potential data hazard can occur when there is a conflict

between the result of the WB stage instruction and the MEM stage

instruction – which should be forwarded?

• Don't even try to forward from MEM/WB to EX; if there is

already forwarding of more recent result from EX/MEM.

111

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRs))
and (MEM/WB. RegisterRd = ID/EX. RegisterRs)) ForwardA = 01

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRt))
and (MEM/WB. RegisterRd = ID/EX. RegisterRt)) ForwardB = 01

112

Data Hazards and Stalls

113

Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this
combination must result in a stall by the hazard detection unit.

Hazard detection unit

114

It operates during the ID stage so that it can insert the stall
between the load and its use.

• Line 1: Check if the instruction is a load
• Line 2 and Line 3: Check if the destination register field of the load

instruction in the EX stage matches either the source register of the
instruction in the ID stage

• Lin 4: The instruction stalls one clock cycle

Line 1
Line 2
Line 3
Line 4

115

• If the instruction in ID stage is stalled, then the instruction in the IF stage must
also be stalled; otherwise, the fetched instruction would be lost

• How to stall an instruction?
Ø Preventing the PC register and the IF/ID pipeline register from changing
Ø The back half of the pipeline (starting with the EX stage) must be performed

with no effect

116

Changing the EX, MEM, and WB control fields of the ID/EX pipeline register
to 0, which will result in a nop instruction.

117

Control hazard

118

119

Assume Branch Not Taken

• Predict that the branch will not be taken and thus continue execution down
the sequential instruction stream

• What if we make a wrong prediction?
• Discard the instruction that are being fetched and decoded
• Execution continues at the branch target

120

Reducing the Delay of Branches

• Reduce the cost of the taken branch
Ø Computing the branch target address: move the branch adder from the

EX stage to the ID stage

Ø Evaluating the branch decision (comparing the two registers read during

the ID stage to see if they are equal): first XORing their respective bits

and then ORing all the results

121

The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle

122

Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction
in the pipeline as a result of the taken branch

Dynamic branch prediction

123

• Prediction of branches at runtime using runtime information
Ø Look up the address of the instruction to see if a branch was taken the

last time this instruction was executed, and, if so, to begin fetching new

instructions from the same place as the last time.

Ø Branch prediction buffer (branch history table): A small memory that is

indexed by the lower portion of the address of the branch instruction

and that contains one or more bits indicating whether the branch was

recently taken or not

124

Pipeline Summary

125

Exceptions

126

• Exception: Any unexpected change in control flow without

distinguishing whether the cause is internal or external

• Interruption: An exception that comes from outside of the

processor

How exceptions are handled in the MIPS architecture

127

• Two types of exceptions in our current MIPS implementation
• Execution of an undefined instruction
• An arithmetic overflow

• A basic action that must be performed when an exception occurs
• Save the address of the offending instruction in the 32-bit exception

program counter (EPC)
• Actions taken to deal with exceptions

• Providing some service to user program
• Taking predefined action in response to an overflow (or stopping the

execution of the program)
• Reporting an error

• When the above actions are done
• Terminating the program or continue its execution using the EPC to

return to where the program is interrupted

128

• To take proper actions to handle exceptions, the operating
system must know the reason for the exception
• 32-bit Cause register used by MIPS (a status register

holding a field that indicates the reason for the exception)
• Vectored interrupts (an interrupt for which the address to

which control is transferred is determined by the cause
the exception)

• When the exception is not vectored, a single entry point
(8000 018016) for all exceptions should be used, and the
operating system decodes the status register to find the
cause

Exceptions in a pipelined implementation

• In pipeline, exceptions can be treated as another form of control hazard
• Detecting exception in EX stage
• Flushing the instructions which are in the stages of IF, ID, and EX
• Saving the address of the offending instruction in the EPC

129

130

Given this instruction sequence

Assume the instruction to be invoked on an exception begin
like this

131

132

Parallelism via Instructions

• Instruction-Level Parallelism: Pipelining exploits the potential parallelism
among instructions.
Ø Increasing the depth of the pipeline to overlap more instructions
Ø Replicating the internal components of the computer so that it can

launch multiple instructions in every pipeline stage (also called
“multiple issue”)

• Multiple issue
Ø Static multiple issue: An approach to implementing a multiple-issue

processor where many decisions are made by the compiler before
execution

Ø Dynamic multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made during execution by the
processor (also called “superscalar”)

133

Implementing multiple-issue pipeline

• Packaging instruction into issue slots

Ø How many instruction can be issued in a given clock cycle?

Ø Which instruction can be issued in a given clock cycle?

• Dealing with data and control hazards

Ø In static issue processor, the compiler handles some (or all) of the

consequences of data/control hazards

Ø In dynamic issue processor, hardware techniques operating at execution

time are used to alleviate at least some classes of hazards

134

Static multiple issue

• Static multiple-issue processors package instructions and deal with hazards

through compilers

Ø Instructions are packaged into issue packets each of which can be

executed in one clock cycle, such that each multiple issue can be

considered as a single instruction allowing several operations in certain

predefined fields (so-called Very Long Instruction Word or VLIW)

Ø Most static issue processors rely on compilers to take on some

responsibility for handling data and control hazards

135

Dynamic multiple-issue processors (Superscalar)

• In the simplest superscalar processor, instructions issue in order, and the

processor decides how many instructions can issue in a given clock cycle

• Compiler is still needed to schedule instruction to move dependences apart

and thereby improve the instruction issue rate

• Different from VLIW processors,

• The code, whether scheduled or not, is guarantted by the harware to

execute correctly

• Compiled code will always run correctly independent of the issue rate

or pipeline structure

136

137

Thanks !

