
Computer	
 Organization	
 and	
 Design
The	
 Hardware/Software	
 Interface

Chapter	
 4	
 	
 	
 -­‐ Processor

1

Instructor: Dr. Feng Li

• 4.1	
 Introduction	

• 4.2	
 Logic	
 Design	
 Conventions
• 4.3	
 Building	
 a	
 datapath
• 4.4	
 A	
 Simple	
 Implementation	
 Scheme
• 4.5	
 An	
 Overview	
 of	
 Pipelining
• 4.6	
 Pipelined	
 Datapath	
 and	
 Control	

• 4.7	
 Data	
 Hazards:	
 Forwarding	
 versus	
 Stalling	

• 4.8	
 Control	
 Hazards	

• 4.9	
 Exceptions	

• 4.10	
 Parallelism	
 and	
 Advanced	
 Instruction-­‐Level	
 Parallelism	

• …	
 …

2

Chapter	
 Four:	
 	
 	
 The	
 processor

• We’ll	
 look	
 at	
 an	
 implementation	
 of	
 the	
 MIPS
• Simplified	
 to	
 contain	
 only:
• memory-­‐reference	
 instructions:	
 	
 lw,	
 sw
• arithmetic-­‐logical	
 instructions:	
 	
 add,	
 sub,	
 and,	
 or,	
 slt
• control	
 flow	
 instructions:	
 	
 beq,	
 j

• An	
 Overview	
 of	
 the	
 implementation
• For	
 every	
 instruction,	
 the	
 first	
 two	
 step	
 are	
 identical

• Fetch	
 the	
 instruction	
 from	
 the	
 memory
• Decode	
 and	
 read	
 the	
 registers

• Next	
 steps	
 depend	
 on	
 the	
 instruction	
 class
• Memory-­‐reference	
 instructions,	
 Arithmetic-­‐logical	
 instructions,	
 branch	
 instructions

3

Introduction

4

An	
 abstract	
 view	
 of	
 the	
 implementation	
 of	
 MIPS	

5

• Datapath elements consist of two types of logic elements
• Combinational elements that operates on datavalues
• State elements: elements that contain state

• The outputs of combinational elements depend only on the
current input
• State elements have some internal storage, and the state can
be maintained even when computers have no power
• Two inputs: data value and clock
• One output: the value thatwas written in an earlier clock cycle
• E.g., D-­‐type flip-­‐flop,memories, registers

6

Logic	
 Design	
 Conventions

•Clocks	
 used	
 in	
 synchronous	
 logic	

Øwhen	
 should	
 an	
 element	
 that	
 contains	
 state	

be	
 updated?

7

State	
 Elements

cycle time
rising edge

falling edge

• Clocking	
 methodology	
 defines	
 when	
 signals	
 can	
 be	
 read	
 and	

when	
 they	
 can	
 be	
 written
• An	
 edge-­‐triggered	
 clocking	
 methodology
• Any	
 values	
 stored	
 in	
 a	
 sequential	
 logic	
 element	
 are	
 updated	
 only	
 on	
 a	

clock	
 edge,	
 which	
 is	
 a	
 quick	
 transition	
 from	
 low	
 to	
 high	
 or	
 vice	
 versa

• Typical	
 execution:
• read	
 contents	
 of	
 some	
 state	
 elements,	

• send	
 values	
 through	
 some	
 combinational	
 logic
• write	
 results	
 to	
 one	
 or	
 more	
 state	
 elements

8

Clocking	
 methodology

Clock cycle

State
element
1

Combinational logic
State
element
2

All signals must propagate from state
element 1, through the combinational
logic, and to state element 2 in the time
of one clock cycle.

• If	
 a	
 state	
 element	
 is	
 not	
 updated	
 on	
 every	
 clock,	
 then	
 an	
 explicit	

write	
 control	
 signal	
 is	
 required.
• Asserted:	
 a	
 signal	
 is	
 logically	
 high
• Deasserted:	
 a	
 signal	
 is	
 logically	
 low

9

• An	
 edge-­‐triggered	
 methodology	
 allows	
 a	
 state	
 element	
 to	
 be	
 read	

and	
 written	
 in	
 the	
 same	
 clock	
 cycle	
 without	
 creating	
 a	
 race	
 that	
 could	

lead	
 to	
 indeterminate	
 data	
 values

10

• Datapath element
• A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, theALU and adders

11

Building	
 a	
 datapath

12

Instruction	
 fetching	
 unit

13

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

• Read	
 two	
 registers,	
 perform	
 an	
 ALU	
 operation	
 on	
 the	
 contents	

of	
 the	
 registers,	
 and	
 write	
 the	
 result	
 to	
 a	
 register

14

R-­‐type	
 (or	
 arithmetic-­‐logical)	
 instructions

32

32

1

32

• lw $t1,	
 offset_value ($t2)
• sw $t1,	
 offset_value ($t2)

15

Memory-­‐reference	
 instructions

• beq instruction
• Three	
 operands:	
 two	
 registers	
 that	
 are	
 compared	
 for	
 equality,	
 and	
 a	
 16-­‐bit	
 offset	

used	
 to	
 compute	
 the	
 branch	
 target	
 address	
 relative	
 to	
 the	
 branch	
 instruction	

address

• The	
 base	
 for	
 branch	
 address	
 calculation	
 is	
 PC+4
• The	
 offset	
 is	
 based	
 on	
 word	
 rather	
 than	
 byte,	
 so	
 the	
 offset	
 field	
 should	
 be	
 shifted	

left	
 2	
 bits

16

Branch	
 instruction

• Compare	
 the	
 register	
 contents	
 to	
 determine	
 if	
 the	
 branch	
 is	
 taken	

or	
 not
• Compute	
 the	
 branch	
 target	
 address

17

18

Implement	
 the	
 R-­‐type	
 instruction

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

R-instruction format：
op(6) rs(5) rt(5) rd(5) shamt func(6)

control

rs

rt

rd

B negate op function
0 00 and
0 01 Or
0 10 Add
1 10 Sub
1 11 Slt

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

19

Implement	
 the	
 I	
 type	
 instruction

bit21-25

bit 16 -20

rs

rt

32bits data

bit0-15

lw $t0, 200($s2)
if $s2=1000，it will load word in element number 1200 to $t0

op(6) rs(5) rt(5) Immediate data

20

Implementation	
 of	
 	
 beq

16 32
Sign
extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation3

0

1
to PC

op(6) rs(5) rt(5) offset

PC

Instruction
memory

Read
address
Instruction

16 32

Registers

Write
register
Write
data

Read
data 1
Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

21

Combine	
 the	
 implementation	
 R-­‐type	
 and	
 I-­‐type	

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

•Use	
 multiplexors	
 to	
 stitch	
 them	
 together

22

Building	
 the	
 Datapath

Note : control signals e.g. add $s0, $s1,$s2/ addi $s0,$s1,100

• Data	
 path	
 +	
 control	
 function
• Instructions
• lw,	
 sw
• beq
• add,	
 sub,	
 and,	
 or,	
 set	
 on	
 less	
 than
• j

23

A	
 simple	
 implementation	
 scheme

Depending	
 on	
 the	
 instruction	
 class,	
 the	
 ALU	
 needs	
 to	
 perform	
 one	
 of	

these	
 first	
 five	
 functions

24

ALU	
 control

•We	
 need	
 a	
 small	
 control	
 unit

• Input:	
 the	
 function	
 field	
 of	
 the	
 instruction	
 and	
 a	
 2-­‐bit	
 control	

field	
 (i.e.,	
 ALUOp)

• Ouput:	
 4-­‐bit	
 ALU	
 control	
 signal

•ALUOp indicates	
 the	
 operations	
 that	
 the	
 ALU	
 will	
 perform

• Addition	
 (00)	
 for	
 load	
 and	
 store	
 instructions

• Subtraction	
 (01)	
 for	
 beq

• Operations	
 encoded	
 in	
 the	
 funct field	
 (10)

25

Analyze for cause and effect

• Informationcomes	
 from	
 the	
 32	
 bits	
 of	
 the	
 instruction	
 	

• Selecting	
 the	
 operations to	
 perform	
 (ALU,	
 read/write,	
 etc.)

• Controlling	
 the	
 flow	
 of	
 data (multiplexor	
 inputs)

• ALU's	
 operation	
 based	
 on	
 instruction	
 type and	
 function code

26

Control

•2-­‐level	
 decoder

27

Scheme	
 of	
 Controller

First
Main
decoder

ALU
Decoder
Second

Signals for Other
Components (7 bits)

op(6) rs(5) rt(5) rd(5) shamt func(6)

ALU operation
(3 bits)

ALU op
(2 bits)

instruction op code

(6 bits)

•Main	
 Control	
 Unit	
 function

• ALU	
 op	
 (2)

• Divided	
 7	
 control	
 signals	
 into	
 2	
 groups

• 4	
 Mux

• 3	
 R/W

28

Designing	
 the	
 Main	
 Control	
 Unit	
 (First	
 level)

ALU
control

Instruction op
code (6)

ALU op (2)

Mux (4)

R/W (3)

• How	
 the	
 ALU	
 control	
 bits	
 are	
 set	
 depends	
 on	
 the	
 ALUOp control	

bits	
 and	
 the	
 different	
 function	
 codes	
 for	
 the	
 R-­‐type	
 instructions

29

Designing	
 the	
 ALU	
 decoder	
 (Second	
 level)

Instruction
opcode

ALUOp Instruction
operation

Funct
field

Desired
ALU action

ALU control

lw 00 Load word xxxxxx add 0010

sw 00 Store word xxxxxx add 0010

beq 01 branch equal xxxxxx subtract 0110

R-­type 10 add 100000 add 0010

R-­type 10 subtract 100010 subtract 0110

R-­type 10 AND 100100 AND 0000

R-­type 10 OR 100101 OR 0001

R-­type 10 Set on less
than

101010 Set on less than 0111

• Describe	
 it	
 using	
 a	
 truth	
 table	
 (can	
 turn	
 into	
 gates):

30

Truth	
 Table	
 for	
 ALU	
 decoder

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 210

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

don’t care

01231012310

01231012311

01230123102

FFFFFFFF
FFFFFFFF

)FFFFFFFF(

opop

opop

opop

ALUALUOperation
ALUALUOperation

ALUALUOperation

+=
+=

++=

• Identify	
 the	
 fields	
 of	
 an	
 instruction
• Identify	
 the	
 control	
 lines	
 that	
 are	
 needed	
 for	
 the	
 datapath

31

Designing	
 the	
 main	
 control	
 unit

Main	
 observations
• Opcode (bits	
 31:26)
• Registers	
 rs (bits	
 25:21)	
 and	
 rt (bits	
 20:16)	
 to	
 be	
 read
• Base	
 register	
 rs (bits	
 25:21)	
 for	
 load/store	
 instructions
• Offset	
 for	
 branch	
 equal,	
 load,	
 and	
 store	
 (bits	
 15:0)
• Destination	
 register:	
 rt (bits	
 20:16)	
 for	
 load	
 instruction,	
 rd
(bits	
 15:11)	
 for	
 R-­‐type	
 instruction

32

33

34

The	
 effect	
 of	
 each	
 of	
 the	
 seven	
 control	
 signals
Signal name Effect when deasserted(=0) Effect when asserted(=1)

RegDst
The register destination number
for the Write register comes from
the rt field (bit 20:16)

The register destination number for the
Write register comes from the rd field
(bit 15:11)

RegWrite None Register destination input is written
with the value on the Write data input

ALUScr
The second ALU operand come
from the second register file output
(Read data 2)

The second ALU operand is the sign-­
extended lower 16 bits of the
instruction..

PCSrc
The PC is replaced by the output of
the adder that calculates the value
PC+4

The PC is replaced by the output of the
adder that calculates the branch target.

MemRead
None Data memory contents designated by

the address input are put on the Read
data output.

MemWrite
None Data memory contents designated by

the address input are replaced by value
on the Write data input.

MemtoReg The value fed to register Write data
input comes from the ALU

The value fed to the register Write data
input comes from the data memory.

35

Instruction RegDst ALUSrc
Memto-­
Reg

Reg
Write

Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-­format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Truth Table for Main decoder

• Simple	
 combinational	
 logic	
 (truth	
 tables)

36

Circuitry	
 of	
 main	
 Controller

R-­format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

opcode output

000000 R-­format

100011 lw

101011 sw

000100 beq

• All	
 of	
 the	
 logic	
 is	
 combinational

• We	
 wait	
 for	
 everything	
 to	
 settle	
 down,	
 and	
 the	
 right	
 thing	
 to	
 be	
 done

• ALU	
 might	
 not	
 produce	
 right	
 answer?	
 	
 right	
 away

• we	
 use	
 write	
 signals	
 along	
 with	
 clock to	
 determine	
 when	
 to	
 write

• Cycle	
 time	
 determined	
 by	
 length	
 of	
 the	
 longest	
 path

37

Our	
 Simple	
 Control	
 Structure

We are ignoring some details like setup and hold times

Clock cycle

State
element
1

Combinational logic
State
element
2

Instruction n Instruction n+1

38

The	
 simple	
 Datapath	
 with	
 the	
 control	
 unit

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

Address

Data
memory

Read
data

Write
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

Add ALU
result

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction [5-0]

R-­type

Op rs rt rd shamtFunct

I-­type

Op rs rt Immediate
Jump-­type
Op address

Shift
left 2

Shift
left 2

26

Instruction [25-0] 1
M
U
X
0

jump

jump address[31-0]

28 PC+4[31-28]

Address

Data
memory

Read
data

Write
data

Add ALU
result

Shift
left 2

Shift
left 2

26

Instruction [25-0] jump address[31-0]

28 PC+4[31-28]

Sign
extend

Instruction [15-0]
16 32I-­type

Op rs rt Immediate
Jump-­type
Op address

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Instruction [31-26]

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction [5-0]

R-­type

Op rs rt rd shamtFunct

1
M
U
X
0

jump

add sub and or slt

39

The	
 Datapath	
 in	
 operation	
 for	
 R-­‐type

26 28

Instruction [15-11] Write
data

Add ALU
result

Shift
left 2

Read
register 2

Read
data 2

Instruction [20-16]

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-­type

Op rs rt rd shamtFunct

Jump-­type
Op address

Read
address

Instruction
[31-0]

Instruction
memory

Read
register 1

Write
register

Write
data

Read
data 1

Registers

Address

Data
memory

Read
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-­type

Op rs rt Immediate

1
M
U
X
0

jump

load instruction

40

The	
 Datapath	
 in	
 operation	
 for	
 lw

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11]

Add ALU
result

Shift
left 2

Read
data 2

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-­type

Op rs rt rd shamtFunct

Jump-­type
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Data
memory

0
M
U
X
1

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-­type

Op rs rt Immediate

1
M
U
X
0

jump

store instruction

41

The	
 Datapath	
 in	
 operation	
 for	
 sw

Read
register 2

Instruction [20-16]
Instruction
memory

Write
data

Address

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Write
data

AddressALU
result

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11]

Instruction [5-0]

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

R-­type

Op rs rt rd shamtFunct

Jump-­type
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Control

Add

pc

4

Sign
extend

Instruction [31-26]

Instruction [25-21]

Instruction [15-0]
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

I-­type

Op rs rt Immediate

1
M
U
X
0

jump

beq instruction

42

The	
 Datapath	
 in	
 operation	
 for	
 beq

Read
register 2

Instruction [20-16]
Instruction
memory

0
M
U
X
1

ALU

ALU
control

Add ALU
result

Shift
left 2

0
M
U
X
1

Data
memory

Read
data 2

Zero

• instruction	
 format
• j	
 	
 Label

• Implementation
• The	
 upper	
 4	
 bits	
 of	
 the	
 current	
 PC+4
• The	
 26-­‐bit	
 immediate	
 field	
 of	
 the	
 jump	
 instruction
• The	
 bits	
 00two

43

j	
 instruction

(000010)2 26 bits address

Registers

0
M
U
X
1

ALU
control

0
M
U
X
1

Read
data 2

Zero

Read
register 1 Read

data 1
Read
register 2

Add ALU
result

Data
memory

Sign
extend

Instruction [25-21]

Instruction [15-0]
16 32

Instruction [20-16]

ALU

Shift
left 2

I-­type

Op rs rt Immediate

Write
data

AddressALU
result

Read
data

0
M
U
X
1

Write
register

Write
data

0
M
U
X
1

Instruction [15-11]

Instruction [5-0]

R-­type

Op rs rt rd shamtFunct

Control

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite

1
M
U
X
0

jump

jump instruction

44

The	
 Datapath	
 in	
 operation	
 for	
 j

Instruction
memory

Jump-­type
Op address

28

Shift
left 2

Instruction [25-0] jump address[31-0]

PC+4[31-28]

Instruction [31-26]

26

Read
address

Instruction
[31-0]

Add

pc

4

Single Vs. Multi-Cycle Machine

• In this implementation, every instruction requires one
cycle to complete è cycle time = time taken for the
slowest instruction

• If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns

Load

Add

Beq

Cycle time = 5 ns

Load

Add

Beq

1 cycle

1 cycle

1 cycle

4 cycles

3 cycles

2 cycles

45

•what	
 if	
 we	
 had	
 a	
 more	
 complicated	
 instruction	
 like	

floating	
 point?	
 	

• If	
 so,	
 the	
 	
 waste	
 of	
 time	
 will	
 be	
 more	
 serious.

• The	
 reason	
 is	
 the	
 following:
• Let’s	
 see	
 the	
 instruction	
 ‘mult’
• This	
 instruction	
 needs	
 to	
 use	
 the	
 ALU	
 repeatedly.

46

Single	
 Cycle	
 Problems

An Overview of Pipelining

47

• Pipelining is an implementation technique in which
multiple instructions are overlapped in execution

48

The laundry analogy for pipelining
• Place one dirty load of clothes in the washer
• When the washer is finished, place the wet load in the dryer
• When the dryer is finished, place the dry load on a table and

fold
• When folding is finished, ask your roommate to put the

clothes away

49

Pipelining paradox
• The time cost for handling a single dirty load is not shorter for

pipelining
• The pipelining for many loads is faster, since everything is

working in parallel, such that more loads are finished per hour

An Overview of Pipelining

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

50

Applying pipelining to processors

51

• A MIPS instruction takes five steps
Ø IF (Instruction Fetch): Fetch instruction from memory
Ø ID (Instruction Decoding): Read registers while decoding the instruction
Ø EX (ALU Execution): Execute the operation or calculate an address
Ø MEM (Memory Access): Access an operand in data memory
Ø WB (Write Back to Register): Write the result into a register

52

Single-cycle, nonpipelined execution versus pipelined execution

A 5-Stage Pipeline

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution
• MEM: memory access
• WB: Write Back to Reg

53

54

What would happen if we increased the number of instructions?

Fro example, 1 000 003 instructions.

Total execution timepipelined = 200 001 400 ps

Total execution timenonpipelined= 800 002 400 ps

800	
 002	
 400	
 𝑝𝑠
200	
 001	
 400	
 𝑝𝑠 ≈ 4

Pipelining improves performance by increasing instruction
throughput, as opposed to decreasing the execution time of an
individual instruction.

Designing instruction sets for pipelining

55

• All MIPS instructions are the same length

• MIPS has only a few instruction formats, with the source register

fields being located in the same place in each instruction

• Memory operands only appear in loads or stores in MIPS

• Operands must be aligned in memory

Pipeline hazards

56

• Hazards: The next instruction cannot execute in the

following clock cycle
Ø Structural hazard

Ø Data hazard

Ø Control hazard

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

57

Structure hazard

58

When a planned instruction cannot execute in the proper
clock cycle because the hardware does not support the
combination of instructions that are set to execute

We use a washer-dryer combination
instead of a separate washer and
dryer

Data hazard

59

When a planned instruction cannot execute in the proper
clock cycle because data that is needed to execute the
instruction is not yet available

Example:

Solution: We do not have to wait for the instruction to
complete before trying to resolve the data hazard. E.g., as
soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract.

add $s0, $t0, $t1

sub $t2, $s0, $t3

60

Forwarding (or bypassing):
A method of resolving a data hazard by retrieving the missing

data element from internal buffers rather than waiting for it to

arrive from programmer-visible registers or memory

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution

• MEM: memory access
• WB: Write Back to Register

61

Data Hazards

62

Bypassing

• Some data hazard stalls can be eliminated: bypassing 63

Load-use data hazard

64

• A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it is needed
by another instruction

• Solution: Pipeline stall (also called “bubble”)

Example - bubble

A  bubble  is  inserted  beginning  in  clock  cycle  4,  by  changing  the  
and  instruction  to  a  nop.

65

Load-use data hazard

66

• A specific form of data hazard in which the data being loaded by
a load instruction has not yet become available when it is needed
by another instruction

• Solution: Pipeline stall (also called “bubble”)

67

a = b + e;
c = b + f;

Assume	
 that	
 all	
 variables	
 are	
 in	
 memory	

and	
 are	
 addressable	
 as	
 offsets	
 from	
 $t0

Control hazard

68

• When a proper instruction cannot execute in the proper pipeline clock cycle
because the instruction that was fetched is not the one that is needed; that is the
flow of instruction addresses is not what the pipeline expected

69

• Branch prediction
Ø A method of resolving a branch hazard that assumes a given outcome

for the branch and proceeds from that assumption rather than waiting to

ascertain the actual outcome

70

Control hazard

71

• A more sophisticated version of branch predictor
Ø Predict some branches as taken, while some as untaken

Ø E.g., loops in a program

• Dynamic hardware predictor
Ø Keeping a history for each branch for taken or untaken, and then using the

recent past behavior to predict the future

Ø When the guess is wrong, the pipeline control must ensure that the

instruction following the wrongly guessed branch have no effect and must

restart the pipeline from the proper branch address

Control hazard

72

• Delayed branch
Ø The delayed branch always executes the next sequential instruction,

with the branch taking place after that one instruction delay
Ø MIPS software will place an instruction immediately after the delayed

branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe
instruction

Big picture of pipeline

73

• Pipelining increases the number of simultaneously executing

instructions and the rate at which instructions are started and

completed.

• Pipelining does not reduce the time it takes to complete an

individual instruction, so-called the latency

Pipelined datapath and control

74

Updating PC

Writing back to registers

75

• IM: The instruction memory and the PC in the instruction fetch stage
• Reg: The register file and sign extender in the instruction decode/ register file read stage, etc
• DM: Data memory access

• One way to show what happens in pipelined execution is to
pretend that each instruction has its own datapath, and then to
place these datapaths on a timeline to show their relationship

76

• If we add some registers to hold data, portions of a single data path can be
shared during instruction execution

• All instructions advance during each clock cycle from one pipeline register to
the next

• No pipeline register at the end of the write-back stage
• PC can be thought of as a visible pipeline register

64 bits 128 bits 97 bits 64bits

Pipeline registers
are highlighted

77

We highlight the right half of
registers or memory when they are
being read and highlight the left
half when they are being written

Example: lw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register

78

Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field
Ø Two register numbers
Ø Increased PC

79

Execute or address calculation
• Reads contents of register 1
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register

80

Memory access
• Read the data memory using the address from the EX/MEM register
• Load the data into MEM/WB pipeline register

81

Write-back
• Read the data from MEM/WB pipeline register
• Write it into the register file

82

We highlight the right half of
registers or memory when they are
being read and highlight the left
half when they are being written

Example: sw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register

83

Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field
Ø Two register numbers
Ø Increased PC

84

Execute or address calculation
• Reads contents of register 2
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register

85

Memory access
• Write the data to the memory according to the address calculated earlier

86

Write-back
• Do nothing

What we learn?

87

• The information from one stage to another should be placed
in the pipeline registers; otherwise, the information would
be lost when the next instruction enters the pipeline stage

• Each logical component of the datapath should be used only
within a single pipeline stage; otherwise, we would have a
structural hazard

A bug ?

88

How can we find the register to which we write the data back?

A revised pipeline control

89

Graphically representing pipelines

90

Multiple-clock-cycle pipeline diagram

Physical recourses are
shown in each stage

Graphically representing pipelines

91

A more traditional version of multiple-clock-cycle pipeline diagram

Graphically representing pipelines

92

• Single-clock-cycle pipeline diagrams show the state of the entire
data path during a single clock cycle

Pipelined control

93

Five groups of control signals

94

• Instruction fetch
Ø Read instruction

memory and write the
PC

Ø Always asserted
• Instruction decode/register

file read
Ø No optional control line

Five groups of control signals

95

• Execution/address calculation
Ø RegDst, ALUOp, ALUSrc

Signal	
 name Effect	
 when	
 deasserted(0) Effect	
 when	
 asserted	
 (1)

RegDst The	
 register	
 destinationnumber	
 for	

the	
 Write	
 register	
 comes	
 from	
 the	
 rt
field	
 (bits	
 20:16)

The	
 register	
 destinationnumber	
 for	
 the	

Write	
 register	
 comes	
 from	
 the	
 rd field	
 (bits	

15:11)

ALUSrc The	
 second	
 ALU	
 Operand	
 comes	

from the	
 second	
 register	
 file	
 output	

(Read	
 data	
 2)

The	
 second	
 ALU	
 operand	
 is	
 the	
 sign-­‐
extended,	
 lower	
 16 bits	
 of	
 the	
 instruction	

Five groups of control signals

96

• Memory access
Ø Branch, MemRead, and MemWrite
Ø PCsrc selects the next sequential address unless control asserts Branch and the

ALU result was 0

Signal	
 name Effect	
 when	
 deasserted(0) Effect	
 when	
 asserted	
 (1)

MemRead None Data	
 memory	
 contents	
 designated	
 by	
 the	

address	
 input	
 are	
 put	
 on	
 the	
 Read	
 data	
 output

MemWrite None Data	
 memory	
 contents	
 designated	
 by	
 the	

address	
 input	
 are	
 replaced	
 by	
 the	
 value	
 on	
 the	

Write	
 data	
 input

PCSrc The	
 PC	
 is	
 replaced	
 by	
 the	
 output	
 of	
 the	

address that	
 computes	
 the	
 value	
 of	
 PC+4

The	
 PC	
 is	
 replaced	
 by	
 the	
 output	
 of	
 the	
 adder	

that	
 calculates	
 the	
 branch	
 target

Five groups of control signals

97

• Write-back
Ø MemtoReg, RegWrite

Signal	
 name Effect	
 when	
 deasserted(0) Effect	
 when	
 asserted	
 (1)

MemtoReg The	
 value	
 fed	
 to	
 the	
 register	
 Write	
 data	

input	
 comes	
 from	
 the	
 ALU

The value	
 fed	
 to	
 the	
 register	
 Write	
 data	
 input	

comes	
 from	
 the	
 data	
 memory

RegWrite None The	
 register	
 on	
 the	
 Write	
 register	
 input	
 is	

written	
 with	
 the	
 value	
 on	
 the	
 Write	
 data	
 input

Implementing the control

98

• Control implementation is to set the control signals
• Extending the pipeline register to store the control settings

Note that four of the
nine control lines are
used in the EX phase,
with the remaining five
control lines passed on
to the EX/MEM pipeline
register extended to hold
the control lines; three
are used during the
MEM stage, and the last
two are passed to
MEM/WB for use in the
WB stage.

99

Data hazard: forwarding vs stalling

100

• An example

101

A more precise notation of dependences

102

• E.g., “ID/EX. RegisterRs” refers to the number of one register whose value
is found in the pipeline register ID/EX

• The first part of the name is the name of the pipeline register
• The second part of the name is the name of the field in that register

103

1a. EX/MEM. RegisterRd = ID/EX. RegisterRs = $2

104

2b. MEM/WB. RegisterRd = ID/EX. RegisterRt = $2

105

106

• The above policy may be inaccurate when the instruction does

not write registers such that it would forward when it shouldn’t
Ø Examining the WB control field of the pipeline register during the EX

and MEM stages determines whether RegWrite is asserted

• In MIPS, $0 should always yield an operand of 0. What if an

instruction has $0 as its destination (e.g., sll $0, $1, 2)
Ø We have to avoid forwarding its possibly nonzero result value

EX/MEM. RegisterRd ≠ 0

MEM/WB. RegisterRd ≠ 0

107

108

109

110

add $1, $1, $2

add $1, $1, $3

add $1, $1, $4

Another potential data hazard can occur when there is a conflict

between the result of the WB stage instruction and the MEM stage

instruction – which should be forwarded?

• Don't even try to forward from MEM/WB to EX; if there is

already forwarding of more recent result from EX/MEM.

111

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRs))
and (MEM/WB. RegisterRd = ID/EX. RegisterRs)) ForwardA = 01

if (MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRt))
and (MEM/WB. RegisterRd = ID/EX. RegisterRt)) ForwardB = 01

112

Data Hazards and Stalls

113

Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this
combination must result in a stall by the hazard detection unit.

Hazard detection unit

114

It operates during the ID stage so that it can insert the stall
between the load and its use.

• Line 1: Check if the instruction is a load
• Line 2 and Line 3: Check if the destination register field of the load

instruction in the EX stage matches either the source register of the
instruction in the ID stage

• Lin 4: The instruction stalls one clock cycle

Line 1
Line 2
Line 3
Line 4

115

• If the instruction in ID stage is stalled, then the instruction in the IF stage must
also be stalled; otherwise, the fetched instruction would be lost

• How to stall an instruction?
Ø Preventing the PC register and the IF/ID pipeline register from changing
Ø The back half of the pipeline (starting with the EX stage) must be performed

with no effect

116

Changing the EX, MEM, and WB control fields of the ID/EX pipeline register
to 0, which will result in a nop instruction.

117

Control hazard

118

119

Assume Branch Not Taken

• Predict that the branch will not be taken and thus continue execution down
the sequential instruction stream

• What if we make a wrong prediction?
• Discard the instruction that are being fetched and decoded
• Execution continues at the branch target

120

Reducing the Delay of Branches

• Reduce the cost of the taken branch
Ø Computing the branch target address: move the branch adder from the

EX stage to the ID stage

Ø Evaluating the branch decision (comparing the two registers read during

the ID stage to see if they are equal): first XORing their respective bits

and then ORing all the results

121

The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle

122

Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction
in the pipeline as a result of the taken branch

Dynamic branch prediction

123

• Prediction of branches at runtime using runtime information
Ø Look up the address of the instruction to see if a branch was taken the

last time this instruction was executed, and, if so, to begin fetching new

instructions from the same place as the last time.

Ø Branch prediction buffer (branch history table): A small memory that is

indexed by the lower portion of the address of the branch instruction

and that contains one or more bits indicating whether the branch was

recently taken or not

124

Pipeline Summary

125

Exceptions

126

• Exception: Any unexpected change in control flow without

distinguishing whether the cause is internal or external

• Interruption: An exception that comes from outside of the

processor

How exceptions are handled in the MIPS architecture

127

• Two types of exceptions in our current MIPS implementation
• Execution of an undefined instruction
• An arithmetic overflow

• A basic action that must be performed when an exception occurs
• Save the address of the offending instruction in the 32-bit exception

program counter (EPC)
• Actions taken to deal with exceptions

• Providing some service to user program
• Taking predefined action in response to an overflow (or stopping the

execution of the program)
• Reporting an error

• When the above actions are done
• Terminating the program or continue its execution using the EPC to

return to where the program is interrupted

128

• To take proper actions to handle exceptions, the operating
system must know the reason for the exception
• 32-bit Cause register used by MIPS (a status register

holding a field that indicates the reason for the exception)
• Vectored interrupts (an interrupt for which the address to

which control is transferred is determined by the cause
the exception)

• When the exception is not vectored, a single entry point
(8000 018016) for all exceptions should be used, and the
operating system decodes the status register to find the
cause

Exceptions in a pipelined implementation

• In pipeline, exceptions can be treated as another form of control hazard
• Detecting exception in EX stage
• Flushing the instructions which are in the stages of IF, ID, and EX
• Saving the address of the offending instruction in the EPC

129

130

Given this instruction sequence

Assume the instruction to be invoked on an exception begin
like this

131

132

Parallelism via Instructions

• Instruction-Level Parallelism: Pipelining exploits the potential parallelism
among instructions.
Ø Increasing the depth of the pipeline to overlap more instructions
Ø Replicating the internal components of the computer so that it can

launch multiple instructions in every pipeline stage (also called
“multiple issue”)

• Multiple issue
Ø Static multiple issue: An approach to implementing a multiple-issue

processor where many decisions are made by the compiler before
execution

Ø Dynamic multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made during execution by the
processor (also called “superscalar”)

133

Implementing multiple-issue pipeline

• Packaging instruction into issue slots

Ø How many instruction can be issued in a given clock cycle?

Ø Which instruction can be issued in a given clock cycle?

• Dealing with data and control hazards

Ø In static issue processor, the compiler handles some (or all) of the

consequences of data/control hazards

Ø In dynamic issue processor, hardware techniques operating at execution

time are used to alleviate at least some classes of hazards

134

Static multiple issue

• Static multiple-issue processors package instructions and deal with hazards

through compilers

Ø Instructions are packaged into issue packets each of which can be

executed in one clock cycle, such that each multiple issue can be

considered as a single instruction allowing several operations in certain

predefined fields (so-called Very Long Instruction Word or VLIW)

Ø Most static issue processors rely on compilers to take on some

responsibility for handling data and control hazards

135

Dynamic multiple-issue processors (Superscalar)

• In the simplest superscalar processor, instructions issue in order, and the

processor decides how many instructions can issue in a given clock cycle

• Compiler is still needed to schedule instruction to move dependences apart

and thereby improve the instruction issue rate

• Different from VLIW processors,

• The code, whether scheduled or not, is guarantted by the harware to

execute correctly

• Compiled code will always run correctly independent of the issue rate

or pipeline structure

136

137

Thanks !

