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Chapter	  Four:	  	  	  The	  processor



• We’ll	  look	  at	  an	  implementation	  of	  the	  MIPS
• Simplified	  to	  contain	  only:
• memory-‐reference	  instructions:	   	  lw,	  sw
• arithmetic-‐logical	  instructions:	   	  add,	  sub,	  and,	  or,	   slt
• control	  flow	  instructions:	   	  beq,	   j

• An	  Overview	  of	  the	  implementation
• For	  every	  instruction,	   the	  first	  two	  step	  are	  identical

• Fetch	  the	  instruction	  from	  the	  memory
• Decode	  and	  read	  the	  registers

• Next	  steps	  depend	   on	  the	  instruction	  class
• Memory-‐reference	   instructions,	  Arithmetic-‐logical	   instructions,	  branch	  instructions
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Introduction
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An	  abstract	  view	  of	  the	  implementation	  of	  MIPS	  
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• Datapath elements consist of two types of logic elements
• Combinational elements that operates on datavalues
• State elements: elements that contain state

• The outputs of combinational elements depend only on the
current input
• State elements have some internal storage, and the state can
be maintained even when computers have no power
• Two inputs: data value and clock
• One output: the value thatwas written in an earlier clock cycle
• E.g., D-‐type flip-‐flop,memories, registers
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Logic	  Design	  Conventions



•Clocks	  used	  in	  synchronous	  logic	  

Øwhen	  should	  an	  element	  that	  contains	  state	  

be	  updated?
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State	  Elements

cycle time
rising edge

falling edge



• Clocking	  methodology	  defines	  when	  signals	  can	  be	  read	  and	  
when	  they	  can	  be	  written
• An	  edge-‐triggered	  clocking	  methodology
• Any	  values	  stored	  in	  a	  sequential	  logic	  element	  are	  updated	  only	  on	  a	  
clock	  edge,	  which	  is	  a	  quick	  transition	  from	  low	  to	  high	  or	  vice	  versa

• Typical	  execution:
• read	  contents	  of	  some	  state	  elements,	  
• send	  values	  through	  some	  combinational	  logic
• write	  results	  to	  one	  or	  more	  state	  elements
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Clocking	  methodology

Clock  cycle

State  
element  
1

Combinational  logic
State  
element  
2

All signals must propagate from state
element 1, through the combinational
logic, and to state element 2 in the time
of one clock cycle.



• If	  a	  state	  element	  is	  not	  updated	  on	  every	  clock,	  then	  an	  explicit	  
write	  control	  signal	  is	  required.
• Asserted:	  a	  signal	  is	  logically	  high
• Deasserted:	  a	  signal	  is	  logically	  low
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• An	  edge-‐triggered	  methodology	  allows	  a	  state	  element	  to	  be	  read	  
and	  written	  in	  the	  same	  clock	  cycle	  without	  creating	  a	  race	  that	  could	  
lead	  to	  indeterminate	  data	  values
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• Datapath element
• A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, theALU and adders
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Building	  a	  datapath
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Instruction	  fetching	  unit
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Registers
Register  #

Data

Register  #

Data  
memory

Address

Data

Register  #

PC Instruction ALU

Instruction  
memory

Address



• Read	  two	  registers,	  perform	  an	  ALU	  operation	  on	  the	  contents	  
of	  the	  registers,	  and	  write	  the	  result	  to	  a	  register
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R-‐type	  (or	  arithmetic-‐logical)	  instructions

32

32

1

32



• lw $t1,	  offset_value ($t2)
• sw $t1,	  offset_value ($t2)
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Memory-‐reference	  instructions



• beq instruction
• Three	  operands:	   two	  registers	  that	  are	  compared	   for	  equality,	  and	  a	  16-‐bit	  offset	  
used	  to	  compute	  the	  branch	  target	  address	  relative	  to	  the	  branch	  instruction	  
address

• The	  base	  for	  branch	  address	  calculation	  is	  PC+4
• The	  offset	   is	  based	  on	  word	  rather	  than	  byte,	   so	  the	  offset	  field	  should	   be	  shifted	  
left	  2	  bits
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Branch	  instruction



• Compare	  the	  register	  contents	  to	  determine	  if	  the	  branch	  is	  taken	  
or	  not
• Compute	  the	  branch	  target	  address
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Implement	  the	  R-‐type	  instruction

Instruction
Registers

Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Write  
data

ALU  
result

ALU
Zero

RegWrite

ALU  operation3

R-instruction format：
op(6) rs(5) rt(5) rd(5) shamt func(6)

control

rs

rt

rd

B negate op function
0 00 and
0 01 Or
0 10 Add
1 10 Sub
1 11 Slt



Instruction

16 32

Registers
Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Data  
memory

Write  
data

Read  
data

Write  
data

Sign  
extend

ALU  
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU  operation3

19

Implement	  the	  I	  type	  instruction

bit21-25

bit 16 -20

rs

rt

32bits data

bit0-15

lw  $t0, 200($s2)
if  $s2=1000，it  will  load  word in element  number 1200 to $t0

op(6) rs(5) rt(5) Immediate data
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Implementation	  of	  	  beq

16 32
Sign  
extend

ZeroALU

Sum

Shift  
left  2

To  branch  
control  logic

Branch  target

PC  +  4  from  instruction  datapath

Instruction

Add

Registers
Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Write  
data

RegWrite

ALU  operation3

0

1
to PC

op(6) rs(5) rt(5) offset



PC

Instruction  
memory

Read  
address
Instruction

16 32

Registers

Write  
register
Write  
data

Read  
data  1
Read  
data  2

Read  
register  1
Read  
register  2

Sign  
extend

ALU  
result

Zero

Data  
memory

Address

Write  
data

Read  
data M  

u  
x

4

Add

M  
u  
x

ALU

RegWrite

ALU  operation3

MemRead

MemWrite

ALUSrc
MemtoReg
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Combine	  the	  implementation	  R-‐type	  and	  I-‐type	  



MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction  
memory

Read  
address

Instruction  
[31– 0]

Instruction  [20– 16]

Instruction  [25– 21]

Add

Instruction  [5– 0]

RegWrite
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16 32Instruction  [15– 0]

0
Registers

Write  
register
Write  
data

Write  
data

Read  
data  1

Read  
data  2

Read  
register  1
Read  
register  2

Sign  
extend

ALU  
result

Zero

Data  
memory

Address Read  
data M  

u  
x

1

0

M  
u  
x

1

0

M  
u  
x

1

0

M  
u  
x

1

Instruction  [15– 11]

ALU  
control

Shift  
left  2

PCSrc

ALU

Add ALU  
result

•Use	  multiplexors	  to	  stitch	  them	  together
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Building	  the	  Datapath

Note : control signals   e.g. add $s0, $s1,$s2/ addi $s0,$s1,100



• Data	  path	  +	  control	  function
• Instructions
• lw,	  sw
• beq
• add,	  sub,	  and,	  or,	   set	  on	  less	  than
• j
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A	  simple	  implementation	  scheme



Depending	  on	  the	  instruction	  class,	  the	  ALU	  needs	  to	  perform	  one	  of	  
these	  first	  five	  functions
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ALU	  control



•We	  need	  a	  small	  control	  unit

• Input:	  the	  function	  field	  of	  the	  instruction	  and	  a	  2-‐bit	  control	  

field	  (i.e.,	  ALUOp)

• Ouput:	  4-‐bit	  ALU	  control	  signal

•ALUOp indicates	  the	  operations	  that	  the	  ALU	  will	  perform

• Addition	  (00)	  for	  load	  and	  store	  instructions

• Subtraction	  (01)	  for	  beq

• Operations	  encoded	  in	  the	  funct field	  (10)

25



Analyze for cause and effect

• Informationcomes	  from	  the	  32	  bits	  of	  the	  instruction	  	  

• Selecting	  the	  operations to	  perform	  (ALU,	  read/write,	  etc.)

• Controlling	  the	  flow	  of	  data (multiplexor	  inputs)

• ALU's	  operation	  based	  on	  instruction	  type and	  function code
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Control



•2-‐level	  decoder
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Scheme	  of	  Controller

First
Main 
decoder

ALU 
Decoder
Second

Signals for Other 
Components (7 bits)

op(6) rs(5) rt(5) rd(5) shamt func(6)

ALU operation
(3 bits)

ALU op
(2 bits)

instruction op code 

(6 bits)



•Main	  Control	  Unit	  function

• ALU	  op	  (2)

• Divided	  7	  control	  signals	  into	  2	  groups

• 4	  Mux

• 3	  R/W
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Designing	  the	  Main	  Control	  Unit	  (First	  level)

ALU
control

Instruction op 
code (6)

ALU op (2)

Mux (4)

R/W (3)



• How	  the	  ALU	  control	  bits	  are	  set	  depends	  on	  the	  ALUOp control	  
bits	  and	  the	  different	  function	  codes	  for	  the	  R-‐type	  instructions
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Designing	  the	  ALU	  decoder	  (Second	  level)

Instruction  
opcode

ALUOp Instruction
operation

Funct  
field

Desired
ALU  action

ALU  control  

lw 00 Load  word xxxxxx add 0010

sw 00 Store  word xxxxxx add 0010

beq 01 branch  equal xxxxxx subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 AND 0000

R-type 10 OR 100101 OR 0001

R-type 10 Set  on  less  
than

101010 Set  on  less  than 0111



• Describe	  it	  using	  a	  truth	  table	  (can	  turn	  into	  gates):
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Truth	  Table	  for	  ALU	  decoder

ALUOp Funct  field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 210

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

don’t care

01231012310

01231012311

01230123102

FFFFFFFF
FFFFFFFF

)FFFFFFFF(

opop

opop

opop

ALUALUOperation
ALUALUOperation

ALUALUOperation

+=
+=

++=



• Identify	  the	  fields	  of	  an	  instruction
• Identify	  the	  control	  lines	  that	  are	  needed	  for	  the	  datapath
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Designing	  the	  main	  control	  unit



Main	  observations
• Opcode (bits	  31:26)
• Registers	  rs (bits	  25:21)	  and	  rt (bits	  20:16)	  to	  be	  read
• Base	  register	  rs (bits	  25:21)	  for	  load/store	  instructions
• Offset	  for	  branch	  equal,	  load,	  and	  store	  (bits	  15:0)
• Destination	  register:	  rt (bits	  20:16)	  for	  load	  instruction,	  rd
(bits	  15:11)	  for	  R-‐type	  instruction
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The	  effect	  of	  each	  of	  the	  seven	  control	  signals
Signal  name Effect  when  deasserted(=0) Effect  when  asserted(=1)

RegDst
The  register  destination  number  
for  the  Write  register  comes  from  
the  rt field  (bit  20:16)

The  register  destination  number  for  the  
Write  register  comes  from  the  rd field  
(bit  15:11)

RegWrite None Register  destination  input  is  written  
with  the  value  on  the  Write  data  input  

ALUScr
The  second  ALU  operand  come  
from  the  second  register  file  output  
(Read  data  2)

The  second  ALU  operand  is  the  sign-
extended  lower  16  bits  of  the  
instruction..

PCSrc
The  PC  is  replaced  by  the  output  of  
the  adder  that  calculates  the  value  
PC+4

The  PC  is  replaced  by  the  output  of  the  
adder  that  calculates  the  branch  target.

MemRead
None Data  memory  contents  designated  by  

the  address  input  are  put  on  the  Read    
data  output.

MemWrite
None Data  memory  contents  designated  by  

the  address  input  are  replaced  by  value  
on  the  Write  data  input.

MemtoReg The  value  fed  to  register  Write  data  
input  comes  from  the  ALU

The  value  fed  to  the  register  Write  data  
input  comes  from  the  data  memory.
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Instruction RegDst ALUSrc
Memto-
Reg

Reg  
Write

Mem  
Read

Mem  
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction  
memory

Read  
address

Instruction  
[31– 0]

Instruction  [20– 16]

Instruction  [25– 21]

Add

Instruction  [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction  [31– 26]

4

16 32Instruction  [15– 0]

0

0M  
u  
x

0

1

Control

Add ALU  
result

M  
u  
x

0

1

Registers
Write  
register

Write  
data

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Sign  
extend

Shift  
left  2

M  
u  
x
1

ALU  
result

Zero

Data  
memory

Write  
data

Read  
data

M  
u  
x

1

Instruction  [15– 11]

ALU  
control

ALU
Address

Truth  Table  for  Main  decoder



• Simple	  combinational	  logic	  (truth	  tables)
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Circuitry	  of	  main	  Controller

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

opcode output

000000 R-format

100011 lw

101011 sw

000100 beq



• All	  of	  the	  logic	  is	  combinational

• We	  wait	  for	  everything	  to	  settle	  down,	  and	  the	  right	  thing	  to	  be	  done

• ALU	  might	  not	  produce	  right	  answer?	  	  right	  away

• we	  use	  write	  signals	  along	  with	  clock to	  determine	  when	  to	  write

• Cycle	  time	  determined	  by	  length	  of	  the	  longest	  path
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Our	  Simple	  Control	  Structure

We are ignoring some details like setup and hold times

Clock  cycle

State  
element  
1

Combinational  logic
State  
element  
2

Instruction  n Instruction  n+1



38

The	  simple	  Datapath	  with	  the	  control	  unit

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

Address

Data
memory 

Read
data

Write
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

Add ALU
result

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [20-16] 

Instruction [15-11] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

Instruction [5-0] 

R-type

Op rs rt rd shamtFunct

I-type

Op rs rt Immediate
Jump-type  
Op address

Shift
left 2

Shift
left 2
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Instruction [25-0] 1
M
U
X
0

jump

jump  address[31-0] 

28 PC+4[31-28] 



Address

Data
memory 

Read
data

Write
data

Add ALU
result

Shift
left 2

Shift
left 2
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Instruction [25-0] jump  address[31-0] 

28 PC+4[31-28] 

Sign
extend

Instruction [15-0] 
16 32I-type

Op rs rt Immediate
Jump-type  
Op address

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Instruction [31-26] 

Instruction [25-21] 

Instruction [20-16] 

Instruction [15-11] 

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

Instruction [5-0] 

R-type

Op rs rt rd shamtFunct

1
M
U
X
0

jump

add sub and or slt

39

The	  Datapath	  in	  operation	  for	  R-‐type



26 28

Instruction [15-11] Write
data

Add ALU
result

Shift
left 2

Read
register 2

Read
data 2

Instruction [20-16] 

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-type

Op rs rt rd shamtFunct

Jump-type  
Op address

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Write
register

Write
data

Read
data 1

Registers

Address

Data
memory 

Read
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

I-type

Op rs rt Immediate

1
M
U
X
0

jump

load instruction
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The	  Datapath	  in	  operation	  for	  lw



Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11] 

Add ALU
result

Shift
left 2

Read
data 2

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-type

Op rs rt rd shamtFunct

Jump-type  
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Data
memory 

0
M
U
X
1

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

I-type

Op rs rt Immediate

1
M
U
X
0

jump

store instruction
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The	  Datapath	  in	  operation	  for	  sw

Read
register 2

Instruction [20-16] 
Instruction
memory 

Write
data

Address

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control



Write
data

AddressALU
result

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11] 

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-type

Op rs rt rd shamtFunct

Jump-type  
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Control

Add

pc

4

Sign
extend

Instruction [31-26] 
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16 32
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MemWrite
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I-type

Op rs rt Immediate

1
M
U
X
0

jump

beq instruction
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The	  Datapath	  in	  operation	  for	  beq

Read
register 2

Instruction [20-16] 
Instruction
memory 

0
M
U
X
1

ALU

ALU
control

Add ALU
result

Shift
left 2

0
M
U
X
1

Data
memory 

Read
data 2

Zero



• instruction	  format
• j	  	  Label

• Implementation
• The	  upper	  4	  bits	  of	  the	  current	  PC+4
• The	  26-‐bit	  immediate	  field	  of	  the	  jump	  instruction
• The	  bits	  00two
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j	  instruction

(000010)2 26 bits address



Registers
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16 32
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I-type
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Write
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R-type

Op rs rt rd shamtFunct

Control

RegDst
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MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
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1
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X
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jump

jump instruction
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The	  Datapath	  in	  operation	  for	  j

Instruction
memory 

Jump-type  
Op address

28

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

Instruction [31-26] 

26

Read
address

Instruction
[31-0] 

Add

pc

4



Single Vs. Multi-Cycle Machine

• In this implementation, every instruction requires one
cycle to complete è cycle time = time taken for the
slowest instruction

• If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns

Load

Add

Beq

Cycle time = 5 ns

Load

Add

Beq

1 cycle

1 cycle

1 cycle

4 cycles

3 cycles

2 cycles
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•what	  if	  we	  had	  a	  more	  complicated	  instruction	  like	  
floating	  point?	  	  
• If	  so,	  the	  	  waste	  of	  time	  will	  be	  more	  serious.

• The	  reason	  is	  the	  following:
• Let’s	  see	  the	  instruction	  ‘mult’
• This	  instruction	  needs	  to	  use	  the	  ALU	  repeatedly.

46

Single	  Cycle	  Problems



An Overview of Pipelining

47

• Pipelining is an implementation technique in which 
multiple instructions are overlapped in execution 
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The laundry analogy for pipelining
• Place one dirty load of clothes in the washer
• When the washer is finished, place the wet load in the dryer
• When the dryer is finished, place the dry load on a table and

fold
• When folding is finished, ask your roommate to put the

clothes away
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Pipelining paradox
• The time cost for handling a single dirty load is not shorter for 

pipelining 
• The pipelining for many loads is faster, since everything is 

working in parallel, such that more loads are finished per hour



An Overview of Pipelining

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined
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Applying pipelining to processors

51

• A MIPS instruction takes five steps
Ø IF (Instruction Fetch): Fetch instruction from memory
Ø ID (Instruction Decoding): Read registers while decoding the instruction
Ø EX (ALU Execution): Execute the operation or calculate an address
Ø MEM (Memory Access): Access an operand in data memory
Ø WB (Write Back to Register): Write the result into a register
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Single-cycle, nonpipelined execution versus pipelined execution



A 5-Stage Pipeline

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution
• MEM: memory access
• WB: Write Back to Reg

53
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What would happen if we increased the number of instructions? 

Fro example, 1 000 003 instructions.

Total execution timepipelined = 200 001 400 ps

Total execution timenonpipelined= 800 002 400 ps

800	  002	  400	  𝑝𝑠
200	  001	  400	  𝑝𝑠 ≈ 4

Pipelining improves performance by increasing instruction
throughput, as opposed to decreasing the execution time of an
individual instruction.



Designing instruction sets for pipelining

55

• All MIPS instructions are the same length

• MIPS has only a few instruction formats, with the source register 

fields being located in the same place in each instruction

• Memory operands only appear in loads or stores in MIPS

• Operands must be aligned in memory 



Pipeline hazards

56

• Hazards: The next instruction cannot execute in the 

following clock cycle
Ø Structural hazard

Ø Data hazard

Ø Control hazard



Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways
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Structure hazard
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When a planned instruction cannot execute in the proper 
clock cycle because the hardware does not support the 
combination of instructions that are set to execute

We use a washer-dryer combination 
instead of a separate washer and 
dryer



Data hazard
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When a planned instruction cannot execute in the proper
clock cycle because data that is needed to execute the
instruction is not yet available

Example:

Solution: We do not have to wait for the instruction to
complete before trying to resolve the data hazard. E.g., as
soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract.

add $s0, $t0, $t1

sub $t2, $s0, $t3
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Forwarding (or bypassing):
A method of resolving a data hazard by retrieving the missing

data element from internal buffers rather than waiting for it to

arrive from programmer-visible registers or memory

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution

• MEM: memory access
• WB: Write Back to Register
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Data Hazards

62



Bypassing

• Some data hazard stalls can be eliminated: bypassing 63



Load-use data hazard

64

• A specific form of data hazard in which the data being loaded by 
a load instruction has not yet become available when it is needed 
by another instruction

• Solution: Pipeline stall (also called “bubble”)



Example - bubble

A  bubble  is  inserted  beginning  in  clock  cycle  4,  by  changing  the  
and  instruction  to  a  nop.
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Load-use data hazard

66

• A specific form of data hazard in which the data being loaded by 
a load instruction has not yet become available when it is needed 
by another instruction

• Solution: Pipeline stall (also called “bubble”)
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a = b + e;
c = b + f;

Assume	  that	  all	  variables	  are	  in	  memory	  
and	  are	  addressable	  as	  offsets	  from	  $t0



Control hazard
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• When a proper instruction cannot execute in the proper pipeline clock cycle
because the instruction that was fetched is not the one that is needed; that is the
flow of instruction addresses is not what the pipeline expected
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• Branch prediction
Ø A method of resolving a branch hazard that assumes a given outcome

for the branch and proceeds from that assumption rather than waiting to

ascertain the actual outcome
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Control hazard

71

• A more sophisticated version of branch predictor
Ø Predict some branches as taken, while some as untaken

Ø E.g., loops in a program

• Dynamic hardware predictor
Ø Keeping a history for each branch for taken or untaken, and then using the

recent past behavior to predict the future

Ø When the guess is wrong, the pipeline control must ensure that the

instruction following the wrongly guessed branch have no effect and must

restart the pipeline from the proper branch address



Control hazard
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• Delayed branch
Ø The delayed branch always executes the next sequential instruction,

with the branch taking place after that one instruction delay
Ø MIPS software will place an instruction immediately after the delayed

branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe
instruction



Big picture of pipeline
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• Pipelining increases the number of simultaneously executing

instructions and the rate at which instructions are started and

completed.

• Pipelining does not reduce the time it takes to complete an

individual instruction, so-called the latency



Pipelined datapath and control
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Updating PC

Writing back to registers
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• IM: The instruction memory and the PC in the instruction fetch stage
• Reg: The register file and sign extender in the instruction decode/ register file read stage, etc
• DM: Data memory access

• One way to show what happens in pipelined execution is to
pretend that each instruction has its own datapath, and then to
place these datapaths on a timeline to show their relationship
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• If we add some registers to hold data, portions of a single data path can be 
shared during instruction execution

• All instructions advance during each clock cycle from one pipeline register to 
the next

• No pipeline register at the end of the write-back stage
• PC can be thought of as a visible pipeline register

64 bits                    128 bits               97 bits                  64bits

Pipeline registers 
are highlighted
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We highlight the right half of 
registers or memory when they are 
being read and highlight the left 
half when they are being written 

Example: lw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register
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Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field 
Ø Two register numbers
Ø Increased PC
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Execute or address calculation
• Reads contents of register 1
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register
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Memory access
• Read the data memory using the address from the EX/MEM register
• Load the data into MEM/WB pipeline register
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Write-back
• Read the data from MEM/WB pipeline register
• Write it into the register file
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We highlight the right half of 
registers or memory when they are 
being read and highlight the left 
half when they are being written 

Example: sw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register
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Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field 
Ø Two register numbers
Ø Increased PC
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Execute or address calculation
• Reads contents of register 2
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register
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Memory access
• Write the data to the memory according to the address calculated earlier 
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Write-back
• Do nothing



What we learn?
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• The information from one stage to another should be placed 
in the pipeline registers; otherwise, the information would 
be lost when the next instruction enters the pipeline stage

• Each logical component of the datapath should be used only 
within a single pipeline stage; otherwise, we would have a 
structural hazard



A bug ?
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How can we find the register to which we write the data back?



A revised pipeline control
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Graphically representing pipelines
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Multiple-clock-cycle pipeline diagram

Physical recourses are 
shown in each stage



Graphically representing pipelines
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A more traditional version of multiple-clock-cycle pipeline diagram



Graphically representing pipelines
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• Single-clock-cycle pipeline diagrams show the state of the entire
data path during a single clock cycle



Pipelined control
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Five groups of control signals
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• Instruction fetch
Ø Read instruction 

memory and write the 
PC

Ø Always asserted
• Instruction decode/register 

file read
Ø No optional control line



Five groups of control signals
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• Execution/address calculation
Ø RegDst, ALUOp, ALUSrc

Signal	  name Effect	  when	  deasserted(0) Effect	  when	  asserted	  (1)

RegDst The	  register	  destinationnumber	  for	  
the	  Write	  register	  comes	  from	  the	  rt
field	  (bits	  20:16)

The	  register	  destinationnumber	  for	  the	  
Write	  register	  comes	  from	  the	  rd field	  (bits	  
15:11)

ALUSrc The	  second	  ALU	  Operand	  comes	  
from the	  second	  register	  file	  output	  
(Read	  data	  2)

The	  second	  ALU	  operand	  is	  the	  sign-‐
extended,	  lower	  16 bits	  of	  the	  instruction	  



Five groups of control signals
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• Memory access
Ø Branch, MemRead, and MemWrite
Ø PCsrc selects the next sequential address unless control asserts Branch and the 

ALU result was 0

Signal	  name Effect	  when	  deasserted(0) Effect	  when	  asserted	  (1)

MemRead None Data	  memory	  contents	  designated	  by	  the	  
address	  input	  are	  put	  on	  the	  Read	  data	  output

MemWrite None Data	  memory	  contents	  designated	  by	  the	  
address	  input	  are	  replaced	  by	  the	  value	  on	  the	  
Write	  data	  input

PCSrc The	  PC	  is	  replaced	  by	  the	  output	  of	  the	  
address that	  computes	  the	  value	  of	  PC+4

The	  PC	  is	  replaced	  by	  the	  output	  of	  the	  adder	  
that	  calculates	  the	  branch	  target



Five groups of control signals
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• Write-back
Ø MemtoReg, RegWrite

Signal	  name Effect	  when	  deasserted(0) Effect	  when	  asserted	  (1)

MemtoReg The	  value	  fed	  to	  the	  register	  Write	  data	  
input	  comes	  from	  the	  ALU

The value	  fed	  to	  the	  register	  Write	  data	  input	  
comes	  from	  the	  data	  memory

RegWrite None The	  register	  on	  the	  Write	  register	  input	  is	  
written	  with	  the	  value	  on	  the	  Write	  data	  input



Implementing the control
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• Control implementation is to set the control signals
• Extending the pipeline register to store the control settings

Note that four of the
nine control lines are
used in the EX phase,
with the remaining five
control lines passed on
to the EX/MEM pipeline
register extended to hold
the control lines; three
are used during the
MEM stage, and the last
two are passed to
MEM/WB for use in the
WB stage.
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Data hazard: forwarding vs stalling
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• An example
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A more precise notation of dependences
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• E.g., “ID/EX. RegisterRs” refers to the number of one register whose value 
is found in the pipeline register ID/EX

• The first part of the name is the name of the pipeline register
• The second part of the name is the name of the field in that register
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1a.  EX/MEM. RegisterRd = ID/EX. RegisterRs = $2
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2b.  MEM/WB. RegisterRd = ID/EX. RegisterRt = $2
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• The above policy may be inaccurate when the instruction does

not write registers such that it would forward when it shouldn’t
Ø Examining the WB control field of the pipeline register during the EX

and MEM stages determines whether RegWrite is asserted

• In MIPS, $0 should always yield an operand of 0. What if an

instruction has $0 as its destination (e.g., sll $0, $1, 2)
Ø We have to avoid forwarding its possibly nonzero result value

EX/MEM. RegisterRd ≠ 0

MEM/WB. RegisterRd ≠ 0
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109
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add $1, $1, $2

add $1, $1, $3

add $1, $1, $4

Another potential data hazard can occur when there is a conflict 

between the result of the WB stage instruction and the MEM stage 

instruction – which should be forwarded?

• Don't even try to forward from MEM/WB to EX; if there is 

already forwarding of more recent result from EX/MEM.
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if ( MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and  not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRs))
and  (MEM/WB. RegisterRd = ID/EX. RegisterRs)) ForwardA = 01

if ( MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and  not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRt))
and  (MEM/WB. RegisterRd = ID/EX. RegisterRt)) ForwardB = 01
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Data Hazards and Stalls

113

Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this
combination must result in a stall by the hazard detection unit.



Hazard detection unit
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It operates during the ID stage so that it can insert the stall
between the load and its use.

• Line 1:  Check if the instruction is a load
• Line 2 and Line 3:  Check if the destination register field of the load 

instruction in the EX stage matches either the source register of the 
instruction in the ID stage

• Lin 4:  The instruction stalls one clock cycle

Line 1
Line 2
Line 3
Line 4
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• If the instruction in ID stage is stalled, then the instruction in the IF stage must 
also be stalled; otherwise, the fetched instruction would be lost

• How to stall an instruction?
Ø Preventing the PC register and the IF/ID pipeline register from changing
Ø The back half of the pipeline (starting with the EX stage) must be performed 

with no effect
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Changing the EX, MEM, and WB control fields of the ID/EX pipeline register 
to 0, which will result in a nop instruction.
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Control hazard
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Assume Branch Not Taken

• Predict that the branch will not be taken and thus continue execution down 
the sequential instruction stream

• What if we make a wrong prediction?
• Discard the instruction that are being fetched and decoded
• Execution continues at the branch target
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Reducing the Delay of Branches

• Reduce the cost of the taken branch
Ø Computing the branch target address: move the branch adder from the 

EX stage to the ID stage

Ø Evaluating the branch decision (comparing the two registers read during 

the ID stage to see if they are equal): first XORing their respective bits 

and then ORing all the results
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The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 
address and zeros the instruction fetched for the next clock cycle
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Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction 
in the pipeline as a result of the taken branch



Dynamic branch prediction
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• Prediction of branches at runtime using runtime information
Ø Look up the address of the instruction to see if a branch was taken the

last time this instruction was executed, and, if so, to begin fetching new

instructions from the same place as the last time.

Ø Branch prediction buffer (branch history table): A small memory that is

indexed by the lower portion of the address of the branch instruction

and that contains one or more bits indicating whether the branch was

recently taken or not
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Pipeline Summary
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Exceptions
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• Exception: Any unexpected change in control flow without

distinguishing whether the cause is internal or external

• Interruption: An exception that comes from outside of the

processor



How exceptions are handled in the MIPS architecture
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• Two types of exceptions in our current MIPS implementation
• Execution of an undefined instruction
• An arithmetic overflow

• A basic action that must be performed when an exception occurs
• Save the address of the offending instruction in the 32-bit exception

program counter (EPC)
• Actions taken to deal with exceptions

• Providing some service to user program
• Taking predefined action in response to an overflow (or stopping the

execution of the program)
• Reporting an error

• When the above actions are done
• Terminating the program or continue its execution using the EPC to

return to where the program is interrupted



128

• To take proper actions to handle exceptions, the operating
system must know the reason for the exception
• 32-bit Cause register used by MIPS (a status register

holding a field that indicates the reason for the exception)
• Vectored interrupts (an interrupt for which the address to

which control is transferred is determined by the cause
the exception)

• When the exception is not vectored, a single entry point
(8000 018016) for all exceptions should be used, and the
operating system decodes the status register to find the
cause



Exceptions in a pipelined implementation

• In pipeline, exceptions can be treated as another form of control hazard
• Detecting exception in EX stage
• Flushing the instructions which are in the stages of IF, ID, and EX
• Saving the address of the offending instruction in the EPC
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Given this instruction sequence

Assume the instruction to be invoked on an exception begin 
like this
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Parallelism via Instructions

• Instruction-Level Parallelism: Pipelining exploits the potential parallelism
among instructions.
Ø Increasing the depth of the pipeline to overlap more instructions
Ø Replicating the internal components of the computer so that it can

launch multiple instructions in every pipeline stage (also called
“multiple issue”)

• Multiple issue
Ø Static multiple issue: An approach to implementing a multiple-issue

processor where many decisions are made by the compiler before
execution

Ø Dynamic multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made during execution by the
processor (also called “superscalar”)
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Implementing multiple-issue pipeline

• Packaging instruction into issue slots

Ø How many instruction can be issued in a given clock cycle?

Ø Which instruction can be issued in a given clock cycle?

• Dealing with data and control hazards

Ø In static issue processor, the compiler handles some (or all) of the

consequences of data/control hazards

Ø In dynamic issue processor, hardware techniques operating at execution

time are used to alleviate at least some classes of hazards
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Static multiple issue

• Static multiple-issue processors package instructions and deal with hazards

through compilers

Ø Instructions are packaged into issue packets each of which can be

executed in one clock cycle, such that each multiple issue can be

considered as a single instruction allowing several operations in certain

predefined fields (so-called Very Long Instruction Word or VLIW)

Ø Most static issue processors rely on compilers to take on some

responsibility for handling data and control hazards
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Dynamic multiple-issue processors (Superscalar)

• In the simplest superscalar processor, instructions issue in order, and the

processor decides how many instructions can issue in a given clock cycle

• Compiler is still needed to schedule instruction to move dependences apart

and thereby improve the instruction issue rate

• Different from VLIW processors,

• The code, whether scheduled or not, is guarantted by the harware to

execute correctly

• Compiled code will always run correctly independent of the issue rate

or pipeline structure
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Thanks !


