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Chapter	
  Four:	
  	
  	
  The	
  processor



• We’ll	
  look	
  at	
  an	
  implementation	
  of	
  the	
  MIPS
• Simplified	
  to	
  contain	
  only:
• memory-­‐reference	
  instructions:	
   	
  lw,	
  sw
• arithmetic-­‐logical	
  instructions:	
   	
  add,	
  sub,	
  and,	
  or,	
   slt
• control	
  flow	
  instructions:	
   	
  beq,	
   j

• An	
  Overview	
  of	
  the	
  implementation
• For	
  every	
  instruction,	
   the	
  first	
  two	
  step	
  are	
  identical

• Fetch	
  the	
  instruction	
  from	
  the	
  memory
• Decode	
  and	
  read	
  the	
  registers

• Next	
  steps	
  depend	
   on	
  the	
  instruction	
  class
• Memory-­‐reference	
   instructions,	
  Arithmetic-­‐logical	
   instructions,	
  branch	
  instructions
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Introduction
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An	
  abstract	
  view	
  of	
  the	
  implementation	
  of	
  MIPS	
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• Datapath elements consist of two types of logic elements
• Combinational elements that operates on datavalues
• State elements: elements that contain state

• The outputs of combinational elements depend only on the
current input
• State elements have some internal storage, and the state can
be maintained even when computers have no power
• Two inputs: data value and clock
• One output: the value thatwas written in an earlier clock cycle
• E.g., D-­‐type flip-­‐flop,memories, registers
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Logic	
  Design	
  Conventions



•Clocks	
  used	
  in	
  synchronous	
  logic	
  

Øwhen	
  should	
  an	
  element	
  that	
  contains	
  state	
  

be	
  updated?

7

State	
  Elements

cycle time
rising edge

falling edge



• Clocking	
  methodology	
  defines	
  when	
  signals	
  can	
  be	
  read	
  and	
  
when	
  they	
  can	
  be	
  written
• An	
  edge-­‐triggered	
  clocking	
  methodology
• Any	
  values	
  stored	
  in	
  a	
  sequential	
  logic	
  element	
  are	
  updated	
  only	
  on	
  a	
  
clock	
  edge,	
  which	
  is	
  a	
  quick	
  transition	
  from	
  low	
  to	
  high	
  or	
  vice	
  versa

• Typical	
  execution:
• read	
  contents	
  of	
  some	
  state	
  elements,	
  
• send	
  values	
  through	
  some	
  combinational	
  logic
• write	
  results	
  to	
  one	
  or	
  more	
  state	
  elements
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Clocking	
  methodology

Clock  cycle

State  
element  
1

Combinational  logic
State  
element  
2

All signals must propagate from state
element 1, through the combinational
logic, and to state element 2 in the time
of one clock cycle.



• If	
  a	
  state	
  element	
  is	
  not	
  updated	
  on	
  every	
  clock,	
  then	
  an	
  explicit	
  
write	
  control	
  signal	
  is	
  required.
• Asserted:	
  a	
  signal	
  is	
  logically	
  high
• Deasserted:	
  a	
  signal	
  is	
  logically	
  low
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• An	
  edge-­‐triggered	
  methodology	
  allows	
  a	
  state	
  element	
  to	
  be	
  read	
  
and	
  written	
  in	
  the	
  same	
  clock	
  cycle	
  without	
  creating	
  a	
  race	
  that	
  could	
  
lead	
  to	
  indeterminate	
  data	
  values
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• Datapath element
• A unit used to operate on or hold data within a processor. In the MIPS
implementation, the datapath elements include the instruction and data
memories, the register file, theALU and adders
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Building	
  a	
  datapath
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Instruction	
  fetching	
  unit
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Registers
Register  #

Data

Register  #

Data  
memory

Address

Data

Register  #

PC Instruction ALU

Instruction  
memory

Address



• Read	
  two	
  registers,	
  perform	
  an	
  ALU	
  operation	
  on	
  the	
  contents	
  
of	
  the	
  registers,	
  and	
  write	
  the	
  result	
  to	
  a	
  register
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R-­‐type	
  (or	
  arithmetic-­‐logical)	
  instructions

32

32

1

32



• lw $t1,	
  offset_value ($t2)
• sw $t1,	
  offset_value ($t2)
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Memory-­‐reference	
  instructions



• beq instruction
• Three	
  operands:	
   two	
  registers	
  that	
  are	
  compared	
   for	
  equality,	
  and	
  a	
  16-­‐bit	
  offset	
  
used	
  to	
  compute	
  the	
  branch	
  target	
  address	
  relative	
  to	
  the	
  branch	
  instruction	
  
address

• The	
  base	
  for	
  branch	
  address	
  calculation	
  is	
  PC+4
• The	
  offset	
   is	
  based	
  on	
  word	
  rather	
  than	
  byte,	
   so	
  the	
  offset	
  field	
  should	
   be	
  shifted	
  
left	
  2	
  bits
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Branch	
  instruction



• Compare	
  the	
  register	
  contents	
  to	
  determine	
  if	
  the	
  branch	
  is	
  taken	
  
or	
  not
• Compute	
  the	
  branch	
  target	
  address

17
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Implement	
  the	
  R-­‐type	
  instruction

Instruction
Registers

Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Write  
data

ALU  
result

ALU
Zero

RegWrite

ALU  operation3

R-instruction format：
op(6) rs(5) rt(5) rd(5) shamt func(6)

control

rs

rt

rd

B negate op function
0 00 and
0 01 Or
0 10 Add
1 10 Sub
1 11 Slt



Instruction

16 32

Registers
Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Data  
memory

Write  
data

Read  
data

Write  
data

Sign  
extend

ALU  
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU  operation3
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Implement	
  the	
  I	
  type	
  instruction

bit21-25

bit 16 -20

rs

rt

32bits data

bit0-15

lw  $t0, 200($s2)
if  $s2=1000，it  will  load  word in element  number 1200 to $t0

op(6) rs(5) rt(5) Immediate data
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Implementation	
  of	
  	
  beq

16 32
Sign  
extend

ZeroALU

Sum

Shift  
left  2

To  branch  
control  logic

Branch  target

PC  +  4  from  instruction  datapath

Instruction

Add

Registers
Write  
register

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Write  
data

RegWrite

ALU  operation3

0

1
to PC

op(6) rs(5) rt(5) offset



PC

Instruction  
memory

Read  
address
Instruction

16 32

Registers

Write  
register
Write  
data

Read  
data  1
Read  
data  2

Read  
register  1
Read  
register  2

Sign  
extend

ALU  
result

Zero

Data  
memory

Address

Write  
data

Read  
data M  

u  
x

4

Add

M  
u  
x

ALU

RegWrite

ALU  operation3

MemRead

MemWrite

ALUSrc
MemtoReg
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Combine	
  the	
  implementation	
  R-­‐type	
  and	
  I-­‐type	
  



MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction  
memory

Read  
address

Instruction  
[31– 0]

Instruction  [20– 16]

Instruction  [25– 21]

Add

Instruction  [5– 0]

RegWrite

4

16 32Instruction  [15– 0]

0
Registers

Write  
register
Write  
data

Write  
data

Read  
data  1

Read  
data  2

Read  
register  1
Read  
register  2

Sign  
extend

ALU  
result

Zero

Data  
memory

Address Read  
data M  

u  
x

1

0

M  
u  
x

1

0

M  
u  
x

1

0

M  
u  
x

1

Instruction  [15– 11]

ALU  
control

Shift  
left  2

PCSrc

ALU

Add ALU  
result

•Use	
  multiplexors	
  to	
  stitch	
  them	
  together
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Building	
  the	
  Datapath

Note : control signals   e.g. add $s0, $s1,$s2/ addi $s0,$s1,100



• Data	
  path	
  +	
  control	
  function
• Instructions
• lw,	
  sw
• beq
• add,	
  sub,	
  and,	
  or,	
   set	
  on	
  less	
  than
• j

23

A	
  simple	
  implementation	
  scheme



Depending	
  on	
  the	
  instruction	
  class,	
  the	
  ALU	
  needs	
  to	
  perform	
  one	
  of	
  
these	
  first	
  five	
  functions

24

ALU	
  control



•We	
  need	
  a	
  small	
  control	
  unit

• Input:	
  the	
  function	
  field	
  of	
  the	
  instruction	
  and	
  a	
  2-­‐bit	
  control	
  

field	
  (i.e.,	
  ALUOp)

• Ouput:	
  4-­‐bit	
  ALU	
  control	
  signal

•ALUOp indicates	
  the	
  operations	
  that	
  the	
  ALU	
  will	
  perform

• Addition	
  (00)	
  for	
  load	
  and	
  store	
  instructions

• Subtraction	
  (01)	
  for	
  beq

• Operations	
  encoded	
  in	
  the	
  funct field	
  (10)
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Analyze for cause and effect

• Informationcomes	
  from	
  the	
  32	
  bits	
  of	
  the	
  instruction	
  	
  

• Selecting	
  the	
  operations to	
  perform	
  (ALU,	
  read/write,	
  etc.)

• Controlling	
  the	
  flow	
  of	
  data (multiplexor	
  inputs)

• ALU's	
  operation	
  based	
  on	
  instruction	
  type and	
  function code
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Control



•2-­‐level	
  decoder

27

Scheme	
  of	
  Controller

First
Main 
decoder

ALU 
Decoder
Second

Signals for Other 
Components (7 bits)

op(6) rs(5) rt(5) rd(5) shamt func(6)

ALU operation
(3 bits)

ALU op
(2 bits)

instruction op code 

(6 bits)



•Main	
  Control	
  Unit	
  function

• ALU	
  op	
  (2)

• Divided	
  7	
  control	
  signals	
  into	
  2	
  groups

• 4	
  Mux

• 3	
  R/W
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Designing	
  the	
  Main	
  Control	
  Unit	
  (First	
  level)

ALU
control

Instruction op 
code (6)

ALU op (2)

Mux (4)

R/W (3)



• How	
  the	
  ALU	
  control	
  bits	
  are	
  set	
  depends	
  on	
  the	
  ALUOp control	
  
bits	
  and	
  the	
  different	
  function	
  codes	
  for	
  the	
  R-­‐type	
  instructions
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Designing	
  the	
  ALU	
  decoder	
  (Second	
  level)

Instruction  
opcode

ALUOp Instruction
operation

Funct  
field

Desired
ALU  action

ALU  control  

lw 00 Load  word xxxxxx add 0010

sw 00 Store  word xxxxxx add 0010

beq 01 branch  equal xxxxxx subtract 0110

R-­type 10 add 100000 add 0010

R-­type 10 subtract 100010 subtract 0110

R-­type 10 AND 100100 AND 0000

R-­type 10 OR 100101 OR 0001

R-­type 10 Set  on  less  
than

101010 Set  on  less  than 0111



• Describe	
  it	
  using	
  a	
  truth	
  table	
  (can	
  turn	
  into	
  gates):

30

Truth	
  Table	
  for	
  ALU	
  decoder

ALUOp Funct  field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 210

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

don’t care

01231012310

01231012311

01230123102

FFFFFFFF
FFFFFFFF

)FFFFFFFF(

opop

opop

opop

ALUALUOperation
ALUALUOperation

ALUALUOperation

+=
+=

++=



• Identify	
  the	
  fields	
  of	
  an	
  instruction
• Identify	
  the	
  control	
  lines	
  that	
  are	
  needed	
  for	
  the	
  datapath

31

Designing	
  the	
  main	
  control	
  unit



Main	
  observations
• Opcode (bits	
  31:26)
• Registers	
  rs (bits	
  25:21)	
  and	
  rt (bits	
  20:16)	
  to	
  be	
  read
• Base	
  register	
  rs (bits	
  25:21)	
  for	
  load/store	
  instructions
• Offset	
  for	
  branch	
  equal,	
  load,	
  and	
  store	
  (bits	
  15:0)
• Destination	
  register:	
  rt (bits	
  20:16)	
  for	
  load	
  instruction,	
  rd
(bits	
  15:11)	
  for	
  R-­‐type	
  instruction

32
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The	
  effect	
  of	
  each	
  of	
  the	
  seven	
  control	
  signals
Signal  name Effect  when  deasserted(=0) Effect  when  asserted(=1)

RegDst
The  register  destination  number  
for  the  Write  register  comes  from  
the  rt field  (bit  20:16)

The  register  destination  number  for  the  
Write  register  comes  from  the  rd field  
(bit  15:11)

RegWrite None Register  destination  input  is  written  
with  the  value  on  the  Write  data  input  

ALUScr
The  second  ALU  operand  come  
from  the  second  register  file  output  
(Read  data  2)

The  second  ALU  operand  is  the  sign-­
extended  lower  16  bits  of  the  
instruction..

PCSrc
The  PC  is  replaced  by  the  output  of  
the  adder  that  calculates  the  value  
PC+4

The  PC  is  replaced  by  the  output  of  the  
adder  that  calculates  the  branch  target.

MemRead
None Data  memory  contents  designated  by  

the  address  input  are  put  on  the  Read    
data  output.

MemWrite
None Data  memory  contents  designated  by  

the  address  input  are  replaced  by  value  
on  the  Write  data  input.

MemtoReg The  value  fed  to  register  Write  data  
input  comes  from  the  ALU

The  value  fed  to  the  register  Write  data  
input  comes  from  the  data  memory.
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Instruction RegDst ALUSrc
Memto-­
Reg

Reg  
Write

Mem  
Read

Mem  
Write Branch ALUOp1 ALUp0

R-­format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction  
memory

Read  
address

Instruction  
[31– 0]

Instruction  [20– 16]

Instruction  [25– 21]

Add

Instruction  [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction  [31– 26]

4

16 32Instruction  [15– 0]

0

0M  
u  
x

0

1

Control

Add ALU  
result

M  
u  
x

0

1

Registers
Write  
register

Write  
data

Read  
data  1

Read  
data  2

Read  
register  1

Read  
register  2

Sign  
extend

Shift  
left  2

M  
u  
x
1

ALU  
result

Zero

Data  
memory

Write  
data

Read  
data

M  
u  
x

1

Instruction  [15– 11]

ALU  
control

ALU
Address

Truth  Table  for  Main  decoder



• Simple	
  combinational	
  logic	
  (truth	
  tables)

36

Circuitry	
  of	
  main	
  Controller

R-­format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

opcode output

000000 R-­format

100011 lw

101011 sw

000100 beq



• All	
  of	
  the	
  logic	
  is	
  combinational

• We	
  wait	
  for	
  everything	
  to	
  settle	
  down,	
  and	
  the	
  right	
  thing	
  to	
  be	
  done

• ALU	
  might	
  not	
  produce	
  right	
  answer?	
  	
  right	
  away

• we	
  use	
  write	
  signals	
  along	
  with	
  clock to	
  determine	
  when	
  to	
  write

• Cycle	
  time	
  determined	
  by	
  length	
  of	
  the	
  longest	
  path

37

Our	
  Simple	
  Control	
  Structure

We are ignoring some details like setup and hold times

Clock  cycle

State  
element  
1

Combinational  logic
State  
element  
2

Instruction  n Instruction  n+1
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The	
  simple	
  Datapath	
  with	
  the	
  control	
  unit

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

Address

Data
memory 

Read
data

Write
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

Add ALU
result

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [20-16] 

Instruction [15-11] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

Instruction [5-0] 

R-­type

Op rs rt rd shamtFunct

I-­type

Op rs rt Immediate
Jump-­type  
Op address

Shift
left 2

Shift
left 2

26

Instruction [25-0] 1
M
U
X
0

jump

jump  address[31-0] 

28 PC+4[31-28] 



Address

Data
memory 

Read
data

Write
data

Add ALU
result

Shift
left 2

Shift
left 2

26

Instruction [25-0] jump  address[31-0] 

28 PC+4[31-28] 

Sign
extend

Instruction [15-0] 
16 32I-­type

Op rs rt Immediate
Jump-­type  
Op address

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Instruction [31-26] 

Instruction [25-21] 

Instruction [20-16] 

Instruction [15-11] 

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

Instruction [5-0] 

R-­type

Op rs rt rd shamtFunct

1
M
U
X
0

jump

add sub and or slt
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The	
  Datapath	
  in	
  operation	
  for	
  R-­‐type



26 28

Instruction [15-11] Write
data

Add ALU
result

Shift
left 2

Read
register 2

Read
data 2

Instruction [20-16] 

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-­type

Op rs rt rd shamtFunct

Jump-­type  
Op address

Read
address

Instruction
[31-0] 

Instruction
memory 

Read
register 1

Write
register

Write
data

Read
data 1

Registers

Address

Data
memory 

Read
data

0
M
U
X
1

0
M
U
X
1

1
M
U
X
0

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

I-­type

Op rs rt Immediate

1
M
U
X
0

jump

load instruction

40

The	
  Datapath	
  in	
  operation	
  for	
  lw



Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11] 

Add ALU
result

Shift
left 2

Read
data 2

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-­type

Op rs rt rd shamtFunct

Jump-­type  
Op address

Read
address

Instruction
[31-0] Read

register 1 Read
data 1

Registers

Data
memory 

0
M
U
X
1

Control

Add

pc

4

Sign
extend

Instruction [31-26] 

Instruction [25-21] 

Instruction [15-0] 
16 32

RegDst
Branch
MemRead
MemtoRead
ALUOp
MemWrite
ALUSrc
RegWrite 

I-­type

Op rs rt Immediate

1
M
U
X
0

jump

store instruction
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The	
  Datapath	
  in	
  operation	
  for	
  sw

Read
register 2

Instruction [20-16] 
Instruction
memory 

Write
data

Address

0
M
U
X
1

ALU
ALU
result

Zero

ALU
control



Write
data

AddressALU
result

Read
data

1
M
U
X
0

Write
register

Write
data

0
M
U
X
1

26 28

Instruction [15-11] 

Instruction [5-0] 

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

R-­type
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The	
  Datapath	
  in	
  operation	
  for	
  beq
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• instruction	
  format
• j	
  	
  Label

• Implementation
• The	
  upper	
  4	
  bits	
  of	
  the	
  current	
  PC+4
• The	
  26-­‐bit	
  immediate	
  field	
  of	
  the	
  jump	
  instruction
• The	
  bits	
  00two
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j	
  instruction

(000010)2 26 bits address
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The	
  Datapath	
  in	
  operation	
  for	
  j

Instruction
memory 

Jump-­type  
Op address

28

Shift
left 2

Instruction [25-0] jump  address[31-0] 

PC+4[31-28] 

Instruction [31-26] 

26

Read
address

Instruction
[31-0] 

Add

pc
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Single Vs. Multi-Cycle Machine

• In this implementation, every instruction requires one
cycle to complete è cycle time = time taken for the
slowest instruction

• If the execution was broken into multiple (faster)
cycles, the shorter instructions can finish sooner

Cycle time = 20 ns

Load

Add

Beq

Cycle time = 5 ns

Load

Add

Beq

1 cycle

1 cycle

1 cycle

4 cycles

3 cycles

2 cycles
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•what	
  if	
  we	
  had	
  a	
  more	
  complicated	
  instruction	
  like	
  
floating	
  point?	
  	
  
• If	
  so,	
  the	
  	
  waste	
  of	
  time	
  will	
  be	
  more	
  serious.

• The	
  reason	
  is	
  the	
  following:
• Let’s	
  see	
  the	
  instruction	
  ‘mult’
• This	
  instruction	
  needs	
  to	
  use	
  the	
  ALU	
  repeatedly.

46

Single	
  Cycle	
  Problems



An Overview of Pipelining

47

• Pipelining is an implementation technique in which 
multiple instructions are overlapped in execution 
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The laundry analogy for pipelining
• Place one dirty load of clothes in the washer
• When the washer is finished, place the wet load in the dryer
• When the dryer is finished, place the dry load on a table and

fold
• When folding is finished, ask your roommate to put the

clothes away



49

Pipelining paradox
• The time cost for handling a single dirty load is not shorter for 

pipelining 
• The pipelining for many loads is faster, since everything is 

working in parallel, such that more loads are finished per hour



An Overview of Pipelining

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined
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Applying pipelining to processors

51

• A MIPS instruction takes five steps
Ø IF (Instruction Fetch): Fetch instruction from memory
Ø ID (Instruction Decoding): Read registers while decoding the instruction
Ø EX (ALU Execution): Execute the operation or calculate an address
Ø MEM (Memory Access): Access an operand in data memory
Ø WB (Write Back to Register): Write the result into a register
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Single-cycle, nonpipelined execution versus pipelined execution



A 5-Stage Pipeline

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution
• MEM: memory access
• WB: Write Back to Reg

53
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What would happen if we increased the number of instructions? 

Fro example, 1 000 003 instructions.

Total execution timepipelined = 200 001 400 ps

Total execution timenonpipelined= 800 002 400 ps

800	
  002	
  400	
  𝑝𝑠
200	
  001	
  400	
  𝑝𝑠 ≈ 4

Pipelining improves performance by increasing instruction
throughput, as opposed to decreasing the execution time of an
individual instruction.



Designing instruction sets for pipelining
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• All MIPS instructions are the same length

• MIPS has only a few instruction formats, with the source register 

fields being located in the same place in each instruction

• Memory operands only appear in loads or stores in MIPS

• Operands must be aligned in memory 



Pipeline hazards

56

• Hazards: The next instruction cannot execute in the 

following clock cycle
Ø Structural hazard

Ø Data hazard

Ø Control hazard



Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways
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Structure hazard
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When a planned instruction cannot execute in the proper 
clock cycle because the hardware does not support the 
combination of instructions that are set to execute

We use a washer-dryer combination 
instead of a separate washer and 
dryer



Data hazard
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When a planned instruction cannot execute in the proper
clock cycle because data that is needed to execute the
instruction is not yet available

Example:

Solution: We do not have to wait for the instruction to
complete before trying to resolve the data hazard. E.g., as
soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract.

add $s0, $t0, $t1

sub $t2, $s0, $t3
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Forwarding (or bypassing):
A method of resolving a data hazard by retrieving the missing

data element from internal buffers rather than waiting for it to

arrive from programmer-visible registers or memory

• IF: Instruction Fetch
• ID: Instruction Decoding
• EX: ALU Execution

• MEM: memory access
• WB: Write Back to Register
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Data Hazards

62



Bypassing

• Some data hazard stalls can be eliminated: bypassing 63



Load-use data hazard

64

• A specific form of data hazard in which the data being loaded by 
a load instruction has not yet become available when it is needed 
by another instruction

• Solution: Pipeline stall (also called “bubble”)



Example - bubble

A  bubble  is  inserted  beginning  in  clock  cycle  4,  by  changing  the  
and  instruction  to  a  nop.

65



Load-use data hazard

66

• A specific form of data hazard in which the data being loaded by 
a load instruction has not yet become available when it is needed 
by another instruction

• Solution: Pipeline stall (also called “bubble”)
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a = b + e;
c = b + f;

Assume	
  that	
  all	
  variables	
  are	
  in	
  memory	
  
and	
  are	
  addressable	
  as	
  offsets	
  from	
  $t0



Control hazard
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• When a proper instruction cannot execute in the proper pipeline clock cycle
because the instruction that was fetched is not the one that is needed; that is the
flow of instruction addresses is not what the pipeline expected



69

• Branch prediction
Ø A method of resolving a branch hazard that assumes a given outcome

for the branch and proceeds from that assumption rather than waiting to

ascertain the actual outcome
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Control hazard

71

• A more sophisticated version of branch predictor
Ø Predict some branches as taken, while some as untaken

Ø E.g., loops in a program

• Dynamic hardware predictor
Ø Keeping a history for each branch for taken or untaken, and then using the

recent past behavior to predict the future

Ø When the guess is wrong, the pipeline control must ensure that the

instruction following the wrongly guessed branch have no effect and must

restart the pipeline from the proper branch address



Control hazard
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• Delayed branch
Ø The delayed branch always executes the next sequential instruction,

with the branch taking place after that one instruction delay
Ø MIPS software will place an instruction immediately after the delayed

branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe
instruction



Big picture of pipeline
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• Pipelining increases the number of simultaneously executing

instructions and the rate at which instructions are started and

completed.

• Pipelining does not reduce the time it takes to complete an

individual instruction, so-called the latency



Pipelined datapath and control
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Updating PC

Writing back to registers
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• IM: The instruction memory and the PC in the instruction fetch stage
• Reg: The register file and sign extender in the instruction decode/ register file read stage, etc
• DM: Data memory access

• One way to show what happens in pipelined execution is to
pretend that each instruction has its own datapath, and then to
place these datapaths on a timeline to show their relationship
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• If we add some registers to hold data, portions of a single data path can be 
shared during instruction execution

• All instructions advance during each clock cycle from one pipeline register to 
the next

• No pipeline register at the end of the write-back stage
• PC can be thought of as a visible pipeline register

64 bits                    128 bits               97 bits                  64bits

Pipeline registers 
are highlighted
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We highlight the right half of 
registers or memory when they are 
being read and highlight the left 
half when they are being written 

Example: lw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register
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Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field 
Ø Two register numbers
Ø Increased PC
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Execute or address calculation
• Reads contents of register 1
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register



80

Memory access
• Read the data memory using the address from the EX/MEM register
• Load the data into MEM/WB pipeline register
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Write-back
• Read the data from MEM/WB pipeline register
• Write it into the register file
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We highlight the right half of 
registers or memory when they are 
being read and highlight the left 
half when they are being written 

Example: sw instruction
Instruction fetch
• Fetch the instruction addressed by PC, and save it in IF/ID pipeline register
• Increase PC by 4 and write it back to PC
• The increased address is also saved in the IF/ID pipeline register
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Instruction decode and register file read
• The following three values are stored in ID/EX pipeline register

Ø 16-bit immediate field 
Ø Two register numbers
Ø Increased PC
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Execute or address calculation
• Reads contents of register 2
• Sign-extend the immediate
• Add the above two values in ALU
• Save the sum in EX/MEM pipeline register
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Memory access
• Write the data to the memory according to the address calculated earlier 
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Write-back
• Do nothing



What we learn?
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• The information from one stage to another should be placed 
in the pipeline registers; otherwise, the information would 
be lost when the next instruction enters the pipeline stage

• Each logical component of the datapath should be used only 
within a single pipeline stage; otherwise, we would have a 
structural hazard



A bug ?
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How can we find the register to which we write the data back?



A revised pipeline control
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Graphically representing pipelines
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Multiple-clock-cycle pipeline diagram

Physical recourses are 
shown in each stage



Graphically representing pipelines
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A more traditional version of multiple-clock-cycle pipeline diagram



Graphically representing pipelines
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• Single-clock-cycle pipeline diagrams show the state of the entire
data path during a single clock cycle



Pipelined control
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Five groups of control signals
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• Instruction fetch
Ø Read instruction 

memory and write the 
PC

Ø Always asserted
• Instruction decode/register 

file read
Ø No optional control line



Five groups of control signals
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• Execution/address calculation
Ø RegDst, ALUOp, ALUSrc

Signal	
  name Effect	
  when	
  deasserted(0) Effect	
  when	
  asserted	
  (1)

RegDst The	
  register	
  destinationnumber	
  for	
  
the	
  Write	
  register	
  comes	
  from	
  the	
  rt
field	
  (bits	
  20:16)

The	
  register	
  destinationnumber	
  for	
  the	
  
Write	
  register	
  comes	
  from	
  the	
  rd field	
  (bits	
  
15:11)

ALUSrc The	
  second	
  ALU	
  Operand	
  comes	
  
from the	
  second	
  register	
  file	
  output	
  
(Read	
  data	
  2)

The	
  second	
  ALU	
  operand	
  is	
  the	
  sign-­‐
extended,	
  lower	
  16 bits	
  of	
  the	
  instruction	
  



Five groups of control signals
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• Memory access
Ø Branch, MemRead, and MemWrite
Ø PCsrc selects the next sequential address unless control asserts Branch and the 

ALU result was 0

Signal	
  name Effect	
  when	
  deasserted(0) Effect	
  when	
  asserted	
  (1)

MemRead None Data	
  memory	
  contents	
  designated	
  by	
  the	
  
address	
  input	
  are	
  put	
  on	
  the	
  Read	
  data	
  output

MemWrite None Data	
  memory	
  contents	
  designated	
  by	
  the	
  
address	
  input	
  are	
  replaced	
  by	
  the	
  value	
  on	
  the	
  
Write	
  data	
  input

PCSrc The	
  PC	
  is	
  replaced	
  by	
  the	
  output	
  of	
  the	
  
address that	
  computes	
  the	
  value	
  of	
  PC+4

The	
  PC	
  is	
  replaced	
  by	
  the	
  output	
  of	
  the	
  adder	
  
that	
  calculates	
  the	
  branch	
  target



Five groups of control signals
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• Write-back
Ø MemtoReg, RegWrite

Signal	
  name Effect	
  when	
  deasserted(0) Effect	
  when	
  asserted	
  (1)

MemtoReg The	
  value	
  fed	
  to	
  the	
  register	
  Write	
  data	
  
input	
  comes	
  from	
  the	
  ALU

The value	
  fed	
  to	
  the	
  register	
  Write	
  data	
  input	
  
comes	
  from	
  the	
  data	
  memory

RegWrite None The	
  register	
  on	
  the	
  Write	
  register	
  input	
  is	
  
written	
  with	
  the	
  value	
  on	
  the	
  Write	
  data	
  input



Implementing the control
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• Control implementation is to set the control signals
• Extending the pipeline register to store the control settings

Note that four of the
nine control lines are
used in the EX phase,
with the remaining five
control lines passed on
to the EX/MEM pipeline
register extended to hold
the control lines; three
are used during the
MEM stage, and the last
two are passed to
MEM/WB for use in the
WB stage.
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Data hazard: forwarding vs stalling
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• An example
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A more precise notation of dependences
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• E.g., “ID/EX. RegisterRs” refers to the number of one register whose value 
is found in the pipeline register ID/EX

• The first part of the name is the name of the pipeline register
• The second part of the name is the name of the field in that register
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1a.  EX/MEM. RegisterRd = ID/EX. RegisterRs = $2
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2b.  MEM/WB. RegisterRd = ID/EX. RegisterRt = $2
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• The above policy may be inaccurate when the instruction does

not write registers such that it would forward when it shouldn’t
Ø Examining the WB control field of the pipeline register during the EX

and MEM stages determines whether RegWrite is asserted

• In MIPS, $0 should always yield an operand of 0. What if an

instruction has $0 as its destination (e.g., sll $0, $1, 2)
Ø We have to avoid forwarding its possibly nonzero result value

EX/MEM. RegisterRd ≠ 0

MEM/WB. RegisterRd ≠ 0
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109
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add $1, $1, $2

add $1, $1, $3

add $1, $1, $4

Another potential data hazard can occur when there is a conflict 

between the result of the WB stage instruction and the MEM stage 

instruction – which should be forwarded?

• Don't even try to forward from MEM/WB to EX; if there is 

already forwarding of more recent result from EX/MEM.
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if ( MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and  not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRs))
and  (MEM/WB. RegisterRd = ID/EX. RegisterRs)) ForwardA = 01

if ( MEM/WB. RegWrite
and (MEM/WB. RegisterRd≠ 0)
and  not (EX/MEM. RegWrite and (EX/MEM. RegisterRd≠ 0)

and (EX/MEM. RegisterRd = ID/EX. RegisterRt))
and  (MEM/WB. RegisterRd = ID/EX. RegisterRt)) ForwardB = 01



112



Data Hazards and Stalls

113

Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this
combination must result in a stall by the hazard detection unit.



Hazard detection unit
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It operates during the ID stage so that it can insert the stall
between the load and its use.

• Line 1:  Check if the instruction is a load
• Line 2 and Line 3:  Check if the destination register field of the load 

instruction in the EX stage matches either the source register of the 
instruction in the ID stage

• Lin 4:  The instruction stalls one clock cycle

Line 1
Line 2
Line 3
Line 4
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• If the instruction in ID stage is stalled, then the instruction in the IF stage must 
also be stalled; otherwise, the fetched instruction would be lost

• How to stall an instruction?
Ø Preventing the PC register and the IF/ID pipeline register from changing
Ø The back half of the pipeline (starting with the EX stage) must be performed 

with no effect
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Changing the EX, MEM, and WB control fields of the ID/EX pipeline register 
to 0, which will result in a nop instruction.
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Control hazard

118
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Assume Branch Not Taken

• Predict that the branch will not be taken and thus continue execution down 
the sequential instruction stream

• What if we make a wrong prediction?
• Discard the instruction that are being fetched and decoded
• Execution continues at the branch target
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Reducing the Delay of Branches

• Reduce the cost of the taken branch
Ø Computing the branch target address: move the branch adder from the 

EX stage to the ID stage

Ø Evaluating the branch decision (comparing the two registers read during 

the ID stage to see if they are equal): first XORing their respective bits 

and then ORing all the results
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The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC 
address and zeros the instruction fetched for the next clock cycle
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Clock cycle 4 shows the instruction at location 72 being fetched and the single bubble or nop instruction 
in the pipeline as a result of the taken branch



Dynamic branch prediction
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• Prediction of branches at runtime using runtime information
Ø Look up the address of the instruction to see if a branch was taken the

last time this instruction was executed, and, if so, to begin fetching new

instructions from the same place as the last time.

Ø Branch prediction buffer (branch history table): A small memory that is

indexed by the lower portion of the address of the branch instruction

and that contains one or more bits indicating whether the branch was

recently taken or not
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Pipeline Summary
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Exceptions
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• Exception: Any unexpected change in control flow without

distinguishing whether the cause is internal or external

• Interruption: An exception that comes from outside of the

processor



How exceptions are handled in the MIPS architecture
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• Two types of exceptions in our current MIPS implementation
• Execution of an undefined instruction
• An arithmetic overflow

• A basic action that must be performed when an exception occurs
• Save the address of the offending instruction in the 32-bit exception

program counter (EPC)
• Actions taken to deal with exceptions

• Providing some service to user program
• Taking predefined action in response to an overflow (or stopping the

execution of the program)
• Reporting an error

• When the above actions are done
• Terminating the program or continue its execution using the EPC to

return to where the program is interrupted
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• To take proper actions to handle exceptions, the operating
system must know the reason for the exception
• 32-bit Cause register used by MIPS (a status register

holding a field that indicates the reason for the exception)
• Vectored interrupts (an interrupt for which the address to

which control is transferred is determined by the cause
the exception)

• When the exception is not vectored, a single entry point
(8000 018016) for all exceptions should be used, and the
operating system decodes the status register to find the
cause



Exceptions in a pipelined implementation

• In pipeline, exceptions can be treated as another form of control hazard
• Detecting exception in EX stage
• Flushing the instructions which are in the stages of IF, ID, and EX
• Saving the address of the offending instruction in the EPC
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Given this instruction sequence

Assume the instruction to be invoked on an exception begin 
like this
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Parallelism via Instructions

• Instruction-Level Parallelism: Pipelining exploits the potential parallelism
among instructions.
Ø Increasing the depth of the pipeline to overlap more instructions
Ø Replicating the internal components of the computer so that it can

launch multiple instructions in every pipeline stage (also called
“multiple issue”)

• Multiple issue
Ø Static multiple issue: An approach to implementing a multiple-issue

processor where many decisions are made by the compiler before
execution

Ø Dynamic multiple issue: An approach to implementing a multiple-issue
processor where many decisions are made during execution by the
processor (also called “superscalar”)
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Implementing multiple-issue pipeline

• Packaging instruction into issue slots

Ø How many instruction can be issued in a given clock cycle?

Ø Which instruction can be issued in a given clock cycle?

• Dealing with data and control hazards

Ø In static issue processor, the compiler handles some (or all) of the

consequences of data/control hazards

Ø In dynamic issue processor, hardware techniques operating at execution

time are used to alleviate at least some classes of hazards

134



Static multiple issue

• Static multiple-issue processors package instructions and deal with hazards

through compilers

Ø Instructions are packaged into issue packets each of which can be

executed in one clock cycle, such that each multiple issue can be

considered as a single instruction allowing several operations in certain

predefined fields (so-called Very Long Instruction Word or VLIW)

Ø Most static issue processors rely on compilers to take on some

responsibility for handling data and control hazards
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Dynamic multiple-issue processors (Superscalar)

• In the simplest superscalar processor, instructions issue in order, and the

processor decides how many instructions can issue in a given clock cycle

• Compiler is still needed to schedule instruction to move dependences apart

and thereby improve the instruction issue rate

• Different from VLIW processors,

• The code, whether scheduled or not, is guarantted by the harware to

execute correctly

• Compiled code will always run correctly independent of the issue rate

or pipeline structure
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Thanks !


