
Computer Organization and Design
The Hardware/Software Interface

Chapter 2 - Introductions: Language of the Computer

1

Dr. Feng Li
fli@sdu.edu.cn

https://funglee.github.io

2

Contents of Chapter 2

l 2.1 Introduction
l 2.2 Operations of the Computer Hardware
l 2.3 Operands of the Computer Hardware
l 2.4 Signed and unsigned Number
l 2.5 Representing Instructions
l 2.6 Logical Operations
l 2.7 Instructions for making decisions
l 2.8 Supporting Procedures
l ……

l Language of the machine
Ø Instructions
Ø Instruction set

l Different computers have similar languages
l Design goals

Ø Maximize performance
Ø Minimize cost
Ø Reduce design time

3

2.1 Introduction

l Every computer must be able to perform arithmetic:
Ø add a, b, c # a=b+c
Ø Exactly three variables

l Design Principle 1
Ø Simplicity favors regularity
Ø Keeping hardware simple: hardware for a variable number of

operands is more complicated than the one for a fixed number
l Example 2.1 Compiling two simple C statements

Ø C code:
a = b + c;
d = a – e;

Ø MIPS code:
add a, b, c
sub d, a, e

2.2 Operations of the Computer Hardware

4

l Example 2.2 Compiling a complex C statement
Ø C code:

f = (g + h) – (i + j);
Ø MIPS code:

add t0, g, h # temporary variable t0 contains g + h
add t1, i, j # temporary variable t1 contains i – j
sub f, t0, t1 # f gets t0 – t1

5

l Arithmetic instruction operands must be registers
Ø 32 bits for each register in MIPS
Ø 32 registers in MIPS
Ø A word in MIPS consists 32 bits

l Design Principle 2
Ø Smaller is faster
Ø A very large number of registers may increase the clock

cycle time simply since it takes electronic signals longer
when they must travel farther

2.3 Operands of the Computer Hardware

6

7

Registers

• The 32 MIPS registers are partitioned as follows:

§ Register 0 : $zero always stores the constant 0
§ Regs 2-3 : $v0, $v1 return values of a procedure
§ Regs 4-7 : $a0-$a3 input arguments to a procedure
§ Regs 8-15 : $t0-$t7 temporaries
§ Regs 16-23: $s0-$s7 variables
§ Regs 24-25: $t8-$t9 more temporaries
§ Reg 28 : $gp global pointer
§ Reg 29 : $sp stack pointer
§ Reg 30 : $fp frame pointer
§ Reg 31 : $ra return address

l Example 2.3 Compiling a C statement using registers

Ø C code
f = (g + h) – (i + j) ;

$s0 $s1 $s2 $s3 $s4
Ø MIPS code

add $t0, $s1, $s2 # $t0 contains g + h
add $t1, $s3, $s4 # $t1 contains i + j
sub $s0, $t0, $t1 # $s0=$t0 – $t1

8

l The number of registers is limited and each register
contains only one data elements, what if we need complex
date structure which contains much more data?

9

Memory operands

100

10

101

1

3

2

1

0

DataAddress

MemoryProcessor

Memory addresses and contents at those locations

l Memory is a large, single-

dimensional array, with the

address acting as the index to

that array, starting from 0

l Data transfer instructions

Ø Load Word (lw): from

memory to register

Ø Store Word (sw): from

register to memory

10

11

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

Assume: g -- s1, h -- s2, base address of A -- s3
Ø C code:

g = h + A[8] ; // A is an array of 100 words
Ø MIPS code:

lw $t0 , 8($s3) # temporary reg $t0 gets A[8]
add $s1, $s2, $t0 # g = h + A[8]

Ø Offset: the constant in a data transfer instruction
Ø Base register: the register added to form the address

l Byte addressing
l Alignment restriction

Ø Addresses of words are multiples of 4 in MIPS

Example 2.4 Compiling with an operand in memory

12

l Alignment restriction
Ø In MIPS, words must start at addresses that are

multiples of 4

13

Actual memory addresses and contents

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

(Assume: h ---- s2, base address of A ---- s3)
Ø C code:

A[12] = h + A[8] ; // A is an array of 100 words
Ø MIPS code:

lw $t0, 32($s3) # temporary reg $t0 gets A[8]
add $t0, $s2, $t0 # temporary reg $t0 gets h + A[8]
sw $t0, 48($s3) # stores h + A[8] back into A[12]

l Example 2.5 Compiling using load and store

14

l What if a program has more variables than a computer
has registers?
Ø Spilling registers: The compiler tries keep the most frequently

used variables in registers, while placing the rest in memory using
load/store instructions.

l Principle
Ø Registers are faster than memory
Ø The number of registers is less
Ø Accessing registers consumes less energy

15

Hardware/Software Interface

l Example
Ø Add the constant 4 to register $s3
Ø MIPS code (assuming $s1+ AddrConstant4 is the memory address of

the constant 4):
lw $t0, AddrConstant($s1) #assume $s1+AddrConstant denotes

the address of the memory unit storing constant 4
add $s3, $s3, $t0

Ø MIPS code (addi: add immediate)
addi $s3, $s3, 4

l Design Principle 3: Make the common case fast
Ø Since zero can be used frequently to simply the instruction set

by offering useful variations, MIPS dedicates a register $zero to
be hard-wired to the value zero

Ø The move operation is just an add instruction where one
operand is zero

Constant or immediate operands

16

l Numbers are processed in computer hardware as a
series of high and low electronic signals; therefore,
they are represented by base 2 numbers (so-called
“binary numbers”)
Ø Bits are the “atom” of computing.

Binary number (base 2): 0000 0001 0010 0011 0100 0101 0110 …
Decimal number (base 10): 0...2n-1

Ø Of course it gets more complicated:
± numbers are finite (overflow)
± fractions and real numbers
± negative numbers

Ø How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Signed and unsigned number

17

l Number systems
Ø Radix based systems are dominating
decimal, octal, binary,…

Ø b: value of the digit, k: radix, n: digits left of radix
point, m: digits right of radix point

Ø Alternatives, e.g. Roman numbers (or Letter)
l Decimal (k=10) -- used by humans
l Binary (k=2) -- used by computers

Numbers and their representation

kiK

1n

mi
kb i) ((N) ∑

−

=
•=

0≤b≤K0≤b≤K
(N)k＝(An－1A n－2A n－3…A 1A 0 • A-1A -２A…A –m+1A – m)k

Most
Significant
Bit

Least
Significant
Bit

18

19

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) à 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

l Representation
Ø ASCII - text characters

±Easy read and write of numbers
±Complex arithmetic (character wise)

Ø Binary number
±Natural form for computers
±Requires formatting routines for I/O

Numbers and their representation

20

l Integer numbers, unsigned
Ø Address calculations
Ø Numbers that can only be positive

l Signed numbers
Ø Positive
Ø Negative

l Floating point numbers
Ø numeric calculations
Ø Different grades of precision

±Singe precision (IEEE)
±Double precision (IEEE)
±Quadruple precision

Number types

21

l First idea:
Positive and negative numbers
Ø Take one bit (e.g. 31) as the sign bit

l 1‘s complement
±0 0000000 = 0 positive zero!
±1 1111111 = 0 negative zero!
±Each comparison to 0 requires two steps

Signed number representation

22

l A common wisdom may suggest that a number can be divided into
sign and magnitude. But is it a good idea?
Ø It is not obvious where to put the sign bit.
Ø An extra step is necessitated.
Ø Both positive zero and negative zero exist, which may resulting in

problems for inattentive programmers.
l A smarter solution: tow’s complement representation

23

Signed number representation

l All negative numbers have a 1 in the most significant bit
(so-called “sign bit”)

l Binary to decimal conversion
x31×−2'(+ x30×2'+ + x29×2-. +⋯+ x1×2(+ (x0 + 2+)

l Overflow happens when the left most retained bit of the
binary bit pattern is not the same as the infinite number of
digits to the left (i.e., the sign is incorrect)

l Signed versus unsigned applies to loads as well
Ø Sign extension

24

l Binary number
11111111 1111 1111 1111 1111 1111 1100two

l Decimal number
(1×-231)+(1×230) +(1×229)+…+(1×22)+(0×21)+(0×20)
=-4ten

25

Binary to decimal conversion

l A quick way to negate a two’s complement binary number
Ø Invert every 0 (resp. 1) to 1 (resp. 0)
Ø Add one to the result

l Example
Ø Negate 2ten

2ten = 0000 0000 0000 0000 0000 0000 0000 0010two

1111 1111 1111 1111 1111 1111 1111 1101two

+ 1two

= 1111 1111 1111 1111 1111 1111 1111 1110two

26

Negation shortcut

l Convert a binary number represented in n bits to a number represented
with more than n bits
Ø Take the most significant bit from the smaller quantity and replicate it to fill the

new bits of the larger quantity
l Example: 16-bit to 32-bit

Ø 16-bit: 2ten = 0000 0000 0000 0010two

Ø 32-bit: 2ten = 0000 0000 0000 0000 0000 0000 0000 0010two

Ø 16-bit: -2ten = 1111 1111 1111 1110two

Ø 32-bit: -2ten = 1111 1111 1111 1111 1111 1111 1111 1110two

l Load byte (lb)
Ø A byte is treated as a signed number and thus can be sign-extends to fill

the 24 left-most bits of the register
l Load byte unsigned (lbu)

27

Sign extension shortcut

l Two’s complement
Ø The unsigned sum of an n-bit number and its n-bit negative is 2n

Ø The negation or complement of a number x is 2n-x
l One’s complement

Ø Inverting each bit from 0 to 1 and from 1 to 0
Ø The negation or complement of a number x is 2n-x-1

28

Elaboration

l Instructions are kept in computers as a series of high and
low electronic signals; therefore, they consist of binary bits

l Mapping registers into numbers
Ø $s0 to $s7 map onto register 16 to 23
Ø $t0 to $t7 map onto register 8 to 15

l All instructions are 32-bit wide.
l Example 2.7 Translating assembly into machine instruction

Ø MIPS code
add $t0, $s1, $s2

Ø Binary version of machine code
| 000000 | 10001 |10010 |01000 | 00000 | 100000 |

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Ø Decimal version of machine code

| 0 | 17 | 18 | 8 | 0 | 32 |
Ø Hexadecimal?

29

Representing instructions in the computer

l All operands are in registers.
l E.g. add $t0, $s1, $s2 # $t0=$s1+$s2

Ø Decimal version of machine code
| 0 | 17 ($s1) | 18 ($s2) | 8 ($t0) | 0 | 32 |

Ø Binary version of machine code
| 000000 | 10001 | 10010 | 01000 | 00000 | 100000 |
| op | rs | rt | rd | shamt | funct |

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Ø Op: Basic operation of the instration opcode
Ø Rs: The first register source.
Ø Rt: The second register source operand.
Ø Rd: The register destination operand.
Ø Shamt: Shift amount.
Ø Funct: Function code, selects the specific variant of the operation

l How about substruction operation?
Ø sub $t1, $t2, $t3 # $t1=$t2-$t3
Ø funct = 34ten

R (Register) type instruction

30

l Load: from memory to register; load word (lw)
Ø lw $t0, 1200($t1) # $t0=A[300]=memory($t1+1200)
Ø Decimal version of machine code

| 35 | 9 | 8 | 1200 |
Ø Binary version of machine code

| 100011 | 01001 | 01000 | 0000 0100 1011 0000 |
| op | rs | rt | address |

6 bits 5 bits 5 bits 16 bits

l Store: from register to memory; store word(sw)
Ø sw $3, 32($4) # memory（$4+32）=$3

I (Immediate) type instruction

31

32

Keep them simple and similar

l C language:
Ø A[300]=h+A[300]

l MIPS ASM
Ø lw $t0, 1200($t1) # $t0=A[300]
Ø add $t0, $s2, $t0 # $t0=$s2+A[300]
Ø sw $t0, 1200($t1) # A[300]= $t0

l Machine language

Translating assembly into machine instruction

op rs rt rd Address/
shamt

funct

35 9 8 1200
0 18 8 8 0 32
43 9 8 1200

33

$t0 8
$t1 9
$s2 18

Two key principles of today’s computers
Ø Instructions are represented as numbers
Ø Programs can be stored in memory to be read or

written just like number
Ø The principles are the stored program concept

34

Stored-program concept

Processor

Accounting program
(machine code)

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

Memory

Stored programs allow a computer
that performs accounting to become,
in the blink of an eye, a computer that
helps an author write a book. The
switch happens simply by loading
memory with programs and data and
then telling the computer to begin
executing at a given location in
memory. Treating instructions in the
same way as data greatly simplifies
both the memory hardware and the
software of computer systems.
Specifically, the memory technology
needed for data can also be used for
programs, and programs like
compilers, for instance, can translate
code written in a notation far more
convenient for humans into code that
the computer can understand.

35

Logical operations C operators Java operators MIPS instructions
Shift left << << sll

Shift right >> >> srl
Bit by bit AND & & and, andi
Bit by bit OR | | or, ori

Bit by bit NOT ~ ~ nor

2.6 logical operations

36

logical operations --- sll/srl

Shift left logical
e.g. $s0: 0000 0000 0000 0000 0000 0000 0000 1001two=9ten

p sll $t2, $s0, 4
$t2: 0000 0000 0000 0000 0000 0000 1001 0000two=144ten

op rs rt rd shamt funct
Field size(bits) 6 5 5 5 5 6

Value 0 0 16 10 4 0
$t2$s0

37

Logical operations --- and

$t2: 0000 0000 0000 0000 0000 1101 1100 0000
$t1: 0000 0000 0000 0000 0011 1100 0000 0000

and $t0, $t1, $t2
$t0: 0000 0000 0000 0000 0000 1100 0000 0000

or $t0, $t1, $t2
$t0: 0000 0000 0000 0000 0011 1101 1100 0000

38

l NOR (Not OR)
Ø A NOR 0 = NOT(A OR 0) = NOT(A)
Ø nor $t0, $t1, $t3 # reg $t0 = ~(reg $t1 | reg $t3)

l Immediate version
Ø andi
Ø ori

39

Logical operations --- nor

l Conditional branches
Ø beq (branch if equal)

beq register1, register2, L1 # if register1 = register2 GOTO L1
Ø bne (branch if not equal)

bne register1, register2, L1 # if register1 ≠ register2 GOTO L1

l Jump instruction
Ø j L1

Instructions for making decisions

40

l Label
Ø L1
Ø Else
Ø Exit

l Label = memory address
l j Exit

Ø goto Exit
Ø Move MemoryAddress(exit) to PC
Ø EX. Assume: Exit=1000 then PC=1000

label

41

Example 2.9 Compiling an if statement to a branch
(Assume: f ~ j ---- $s0 ~ $s4)

Branch instructions

p C code:
n if (i = = j)

p f = g + h ;
n else

p f = g - h ;

p MIPS assembly code:
bne $s3, $s4, Else # go to else if i ≠ j
add $s0, $s1, $s2 #f = g + h (skipped if i ≠ j)
j Exit # go to exit
Else: sub $s0, $s1, $s2 # f = h - h (skipped if i = j)
Exit :

i == j?

f=g– hf = g + h

Else:

Exit:

i=j i≠ j

42

l C code:
while (save[i]==k)
i + = 1 ;

l Assume: i ~ k ---- $s3 ~ $s5
base of int array save[] --- $s6

l MIPS assembly code:
Loop: sll $t1, $s3, 2

add $t1,$t1,$s6
lw $t0,0($t1)
bne $t0,$s5,Exit
addi $s3,$s3,1
j Loop

Exit:

Compiling a while loop in C

43

l A sequence of instructions without branches
(except possibly at the end) and without branch
targets or branch labels (except possibly at the
beginning)

Basic block

44

l Signed integer
Ø slt: set on less than signed register

±E.g. slt $t0, $s3, $s4 # $t0=1, if $s3<$s4
no change, else

Ø slti: set on less than signed immediate
±E.g. slti $t0, $s2, -10 # $t0=1, if $s2<-10

no change, else

l unsigned integer
Ø sltu: set on less than unsigned register
Ø sltiu: set on less than immediate unsigned

±E.g. sltiu $t0, $s2, 10 # $t0=1, if $s2<10
no change, else

Set on less than

45

l Example
Ø $s0: 1111 1111 1111 1111 1111 1111 1111 1111
Ø $s1: 0000 0000 0000 0000 0000 0000 0000 0001
Ø What are the values of registers after these two

instructions?
± slt $t0, $s0, $s1
± sltu $t1, $s0, $s1

Set on less than

signed unsigned

$s0 -1 4,294,967,295

$s1 1 1

46

l Index out of bounds
Ø int a[10];
Ø a[12]=3;

l If $s1>=$t2, goto the label IndexOutOfBounds
l slt or sltu?
l Answer

Ø Assume that $t2 has the value of array length
Ø sltu $t0, $s1, $t2 # $t0=0 if $s1>=$t2 or $s1<0

beq $t0, $zero, IndexOutOfBounds

Bound check shortcut

47

l A trivial solution is to turn the switch statement
into a chain of if-then-else statements

l Another choice is to encode the alternatives as a
table of addresses of alternative instruction
sequences (i.e., jump address table or jump table)
Ø An array of words containing address that correspond

to labels in the code
Ø Load the appropriate entry from the jump table to a

register
Ø Jump register instruction: jr

48

Case/switch statement

l A procedure (or function) is one tool programmers use to
structure programs, both to make them easier to
understand and to allow code to be reused. It is one way to
implement abstraction in software.

l Six steps for execution of the procedure
1.Main program to place parameters in place where the procedure

can access them
2. transfer control to the procedure
3. Acquire the storage resources needed for the procedure
4.Perform the desired task
5. Return result value to main program
6. Return control to the point of origin

Supporting Procedures in Computer Hardware

49

p Registers for procedure calling
n $a0 ~ $a3: four argument registers to pass parameters
n $v0, v1: return results
n $ra: one return address register to return to the point of origin

p Instruction for procedures: jal(jump-and-link)

jal ProcedureAddress

1). Next instruction address (PC+4) is saved to $ra
2). Procedure Address is moved to PC

p return control to the caller using
jr $ra # return

50

l Caller
l Callee–Called procedure
l Caller-callee

Ø Caller puts the parameters in $a0-$a3
Ø jal ProcedureAddress
Ø Callee (procedure) performs the calculation
Ø Callee put the results into $v0-$v1
Ø jr $ra

51

l Compiling a C procedure
Ø int leaf_example(int g, int h, int i, int j)

{
int f=(g+h)-(i+j);
return f;

}

Procedure example

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)

add $t0, $a0,$a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0,$s0, $zero

lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

52

l More than 4 arguments
l More than 2 return value

l Spill registers to memory
l Stack

Ø ideal data structure for spilling registers
l Stack Operation:

Ø Push, pop ;
l Stack pointer: sp (register 29)
l Grow

Ø from higher addresses to lower addresses

Using more registers

53

l Two groups of registers
Ø $t0-$t9: ten temporary registers , not preserved by the

callee
Ø $s0-$s9 : 8 saved registers, must be preserved on a

procedure call

temporary registerstemporary registers

leaf_example:
addi $sp, $sp, -4
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)

add $t0, $a0,$a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0,$s0, $zero

lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 4
jr $ra

54

The values of the stack pointer and stack before,
during and after procedure call in the example

Contents of register $s0

Contents of register $t0

Contents of register $t1

$sp

$sp

$sp

High address

Low address a. b. c.

55

l Leaf procedure: procedures that do not call others
l Nested Procedure: call other procedures

Ø Recursive procedure: invoke “clones” of themselves
± Example 2.16 Compiling a recursive procedure (Assume: n ---- a0)

Nested Procedures

C code:
int fact (int n)
{

if (n < 1) return (1) ;
else return (n*fact(n-1)) ;

}

fact: addi $sp, $sp, -8 #adjust stack for 2 items
sw $ra, 4($sp) #save the return address
sw $a0, 0($sp) #save the argument n
slti $t0, $a0, 1 # test for n<1
beq $t0, $zero, L1 # if n >= 1, go to L1
addi $v0, $zero, 1 # return 1
addi $sp, $sp, 8
jr $ra #return to caller

L1: addi $a0, $a0, -1 #n>=1, argument gets(n-1)
jal fact
lw $a0, 0($sp) #restore from jal: restore argument n
lw $ra, 4($sp) #restore the return address
addi $sp, $sp, 8 #adjust stack pointer to pop 2 items
mul $v0, $a0, $v0 #return n*fact(n-1)
jr $ra #return to the caller

main:
addi $a0, $zero, 2
jal fact
jr $ra #return

56

SP

SP-
16

1000

2

1

2000

1000

2

1

2000

SP-
16

1000

2
SP-
8

初始 主程序第一次 第一次递归调用 第二次递归调用 N<1时
CALL FACT FACT FACT

SP-
24

1000

2

1

2000

2000

0

57

l The segment of the stack containing a procedure’s saved
registers and local variables is called a procedure frame or
activation record

l A frame pointer ($fp) is used to point to the first word of
the frame of a procedure

l A frame pointer offers a stable base register within a
procedure for local memory-reference.

58

Allocating space for new data on the stack

Stack allocation before, during and after
procedure call

Saved argument
registers (if any)

Local arrays and
structures (if any)

Saved saved
registers (if any)

Saved return address

b.

$sp

$sp

$sp

c.

$fp

$fp

$fp

a.

High address

Low address

Procedure frame
/activation record

Frame pointer

59

$sp

$gp

0040 0000 hex

0

1000 0000 hex

Text

Static data

Dynamic data

Stack7fff ffff hex

1000 8000 hex

 pc

Reserved

MIPS memory allocation for program and dataMIPS memory allocation for program and data

heap

l Static data segment
Ø Global variables, static variables,

constants

l Stack
l Heap

Ø Data structures tend to grow and shrink
during their lifetime

Ø Stack and heap grow towards each other

l Text segment
Ø Program codes

60

l Running out memeory
l Out of bound of memory
l non-existent address
l a buffer overflow
l using uninitialized pointers
l …

Segment fault（segfault）

61

l Most computer today offer 8-bit bytes to represent characters
l ASCII (American Standard Code for Information

Interchanges) is the most commonly used representation

62

Communicating with people

l Instructions for moving bytes
Ø Load byte (lb): load a byte from memory, and place it in the

rightmost 8 bits of a register
± lb $t0, 0($sp) # read byte from source

Ø Store byte (sb): take a byte from the rightmost 8 bits of a register
and writes it to memory
± sb $t0, 0($sp) # write byte to destination

Ø load byte unsigned (lbu)
± lbu $t0, 0($sp) #read byte from source

Ø Load halfword (lh)
± lh $t0, 0($sp)

Ø Load halfword unsigned (lhu)
± lhu $t0, 0($sp)

63

l Example 2.17 Compiling a string copy procedure
(Assume: base addresses for x and y ---- r0 and r1 i --- r4)

Ø C code:
void strcpy (char x[] , char y[])
{

int i ;
i = 0 ;
while ((x[i] = y[i]) != ‘\0’) /*copy and test byte*/

i = i + 1 ;
}

String copy

64

MIPS assembly code:
strcpy: addi $sp, $sp, -4 # adjust stack

sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero #i = 0 + 0

L1: add $t1, $s0, $a1 # address of y[i] in $t1
lbu $t2, 0($t1) #$t2=y [i]
add $t3, $s0, $a0 #address of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # if y[i] 0= 0, go to L2
addi $s0, $s0, 1 # i = i + 1
j L1

L2: lw $s0, 0($sp) # y[i] = = 0; end of string;
#restore old $s0

addi $sp, $sp, 4 #pop 1 word off stack
jr $ra # return

65

Optimization for example 3.17
Ø strcpy is a leaf procedure
Ø Allocate i to a temporary register

l For a leaf procedure
Ø The compiler exhausts all temporary registers
Ø Then use the registers it must save

66

l 32-bit Immediate operands
l Addressing in Branches and Jumps
l Showing Branch offset in Machine Language
l MIPS addressing mode summary

MIPS Addressing

67

l When a constant cannot fit the corresponding
field (16-bit) in instructions, we have to load it to a
register

l Load 32-bit constant to $s0
Ø 0000 0000 0011 1101 0000 1001 0000 0000
Ø lui $s0,0x003D #$s0=0000 0000 0011 1101 0000 0000 0000 0000

Ø ori $s0, $s0, 0x0900 #$s0=0000 0000 0011 1101 0000 1001 0000 0000

l lui $t0, 255

Load a 32-bit constant

op rs rt constant
001111 0000 01000 0000 0000 1111 1111

68

l J-type instruction
Ø j 10000 # go to location 10000

l Conditional branch instruction
Ø bne $s0, $s1, Exit # go to Exit if $s0 != $s1

69

Addressing in branches and jumps

2 10000

6 bits 26 bits

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

No program could be bigger than 2(2 !!!

l Program counter = Register + Branch address
l PC-relative addressing

Ø Almost all conditional branches go to locations less than 216 words
Ø PC is used as the base register
Ø Since PC is increased by 4 early to point to the next instruction,

MIPS address is actually relative to the address of the following
instruction (PC+4) as opposed to the current instruction (PC)

l Jump-and-link and Jump instructions
Ø The invoked procedures are usually far away from the branches
Ø J-type instruction is employed

70

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3,1
j Loop

Exit:

Showing Branch offset in Machine Language

address Op rs rt

80000 0 0 19 9 2 0
80004 0 9 22 9 0 32
80008 35 9 8 0
80012 5 8 21 2 (addr)
80016 8 19 19 1
80020 2 20000
80024 …

PC-relative addressing:
PC=PC+addr*4 #PC=80016

71

l beq $s0, $s1, L1
l What if the address L1 is far away?

Ø bne $s0, $s1, L
Ø j L1
Ø L2:

72

Branching Far Away

l Immediate addressing
Ø The operand is a constant within the instruction

l Register addressing
Ø The operand is a register

73

MIPS addressing mode summary

l Base or displacement addressing
Ø The operand is at the memory location whose address is the sum of

a register and a constant in the instruction

l PC-relative address
Ø The branch address is the sum of the PC and a constant in the

instruction

74

MIPS addressing mode summary

l Pseudodirect addressing
Ø The jump address is the 26 bits of the instruction concatenated

with the upper bits of the PC

75

MIPS addressing mode summary

Decoding Machine Code

Machine instruction: 0x00af8020
0000 0000 1010 1111 1000 0000 0010 0000

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

add $s0, $a1, $t7

76

l When there exist cooperation between tasks, their parallel
execution is difficult. We need to synchronize them to
avoid the risk of data race

l Basic operation: lock and unlock
Ø Lock and unlock can be used straightforwardly to create regions

where only a single processor can operate (so-called “mutual
exclusion”)

77

Parallelism and Instructions
Synchronization

l Atomic exchange
Ø The value 0 indicates that the lock is free, while 1 implies that the

lock is unavailable
Ø A processor tries to set the lock by doing an exchange of 1, which is

in a register, with the memory address corresponding to the lock
l Atomic swap

Ø A pair of instructions in which the second one returns a value
showing whether the pair of instructions was executed as if the
pair were atomic

Ø Load linked (ll) and store conditional (sc)

78

Build a basic synchronization primitive

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

79

Translating and Starting a Program

l Assembly language is an interface to high-level software
l Pseudoinstruction

Ø A common variation of assembly language instructions often treated as
if it was an instruction in its own right

Ø move $t0, $t1 # register $t0 gets register $t1
Ø add $t0, $zero, $t1 #register $t0 gets 0+register $t1
Ø More can be found at

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions
l The main task is to translate assembly language into machine

code (i.e., an object file)
Ø 6 pieces of the object file for Unix systems: object file header, text

segment, static data segment, relocation information, symbol table,
debugging information

Assembler

80

l Each procedure is compiled and assembled
independently, and a linker (or link editor) “stitches”
them together.
Ø Place code and data modules symbolically in memory
Ø Determine the addresses of data and instruction labels
Ø Patch both the internal and external references

l The linker produces an executable file that can be run
on a computer

Linker

81

82

l 1000 8000hex + (-0000 8000hex) = 1000 0000hex

l -0000 8000hex = -0000 0000 0000 0000 1000 0000 0000 0000two

= 1111 1111 1111 1111 0111 1111 1111 1111two+1two

=1111 1111 1111 1111 1000 0000 0000 0000two

l 1000 8000hex + (-0000 7fe0hex) = 1000 0020hex

l -0000 7fe0hex = -0000 0000 0000 0000 0111 1111 1110 0000two

= 1111 1111 1111 1111 1000 0000 0001 1111two+ 1two

= 1111 1111 1111 1111 1000 0000 0010 0000two

83

l Loader is the part of an operating system that is responsible for
loading programs, one of the essential stages in the process of starting
a program

l It means loader is a program that places programs into memory and
prepares them for execution.

l Loading
Ø Determine size of text and data segments
Ø Create an address space large enough
Ø Copy instructions and data from executable file to memory
Ø Copy parameters (if any) to the main program onto the stack
Ø Initialize registers and set $sp to the first free location
Ø Jump to a start-up routine

Loader

84

l Linking Libraries before the program is run
Ø The library routines become part of the executable code.
Ø It loads all routines in the library that are called anywhere in the

executable, even if those calls are not executed
l Dynamically linked libraries (DLLs)

Ø Library routines that are linked to a program during execution
Ø DLLs require extra space for the information needed for dynamic

linking, but do not require that whole libraries be copied or linked

85

Dynamically linked libraries

l A java program is first compiled to Java bytecode instructions, which are very
close to java language such that the compilation is trivial

l A software interpreter, so-called Java Virtual Machine (JVM), can execute Java
bytecodes. JVM also links to desired routines in Java libraries while the program
is running
Ø High portability but low performance

l To preserve portability and improve execution speed, Just In Time compilers (JIT)
is designed for optimization purpose
Ø They profile the running program to find the “hot” method and then compile them into the native

instruction.
Ø The compiled portion is saved for the next time the program is run.

Starting a java program

86

l Three general steps for translating C procedures
Ø Allocate registers to program variables
Ø Produce code for the body of the procedures
Ø Preserve registers across the procedures invocation

l Procedure swap
Ø C code

void swap (int v[] , int k)
{

int temp ;
temp = v[k] ;
v[k] = v[k + 1] ;
v[k + 1] = temp ;

}

A C Sort Example To Put it All Together

Ø Register allocation for swap
v ---- $a0 k ---- $a1
temp ---- $t0

Ø swap is a leaf procedure,
nothing to preserve

87

Code for the procedure swap

88

89

Arrays versus Pointers

l Two principles of stored-program computers
Ø Use instructions as numbers
Ø Use alterable memory for programs

l Four design principles
Ø Simplicity favors regularity
Ø Smaller is faster
Ø Good design demands good compromises
Ø Make the common case fast

90

Summary

l Fallacies
Ø More powerful instructions mean higher performance
Ø Write in assembly language to obtain the highest

performance
Ø The importance of commercial binary compatibility

means successful instruction sets don’t change

l Pitfalls
Ø Forgetting that sequential word addresses in machines

with byte addressing do not differ by one
Ø Using a pointer to an automatic variable outside its

defining procedure

91

Fallacies and pitfalls

l 2.13 Sort algorithm in MIPS
l 2.15 Compiling C and interpreting Java
l 2.16 Real Stuff: ARM instructions
l 2.17 Real Stuff: x86 instructions

92

Further reading

END

93

